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Abstract
Purpose  Intensity-based image registration has been proven essential in many applications accredited to its unparalleled 
ability to resolve image misalignments. However, long registration time for image realignment prohibits its use in intra-
operative navigation systems. There has been much work on accelerating the registration process by improving the algorithm’s 
robustness, but the innate computation required by the registration algorithm has been unresolved.
Methods  Intensity-based registration methods involve operations with high arithmetic load and memory access demand, 
which supposes to be reduced by graphics processing units (GPUs). Although GPUs are widespread and affordable, there is a 
lack of open-source GPU implementations optimized for non-rigid image registration. This paper demonstrates performance-
aware programming techniques, which involves systematic exploitation of GPU features, by implementing the diffeomorphic 
log-demons algorithm.
Results  By resolving the pinpointed computation bottlenecks on GPU, our implementation of diffeomorphic log-demons 
on Nvidia GTX Titan X GPU has achieved ~ 95 times speed-up compared to the CPU and registered a 1.3-M voxel image 
in 286 ms. Even for large 37-M voxel images, our implementation is able to register in 8.56 s, which attained ~ 258 times 
speed-up. Our solution involves effective employment of GPU computation units, memory, and data bandwidth to resolve 
computation bottlenecks.
Conclusion  The computation bottlenecks in diffeomorphic log-demons are pinpointed, analyzed, and resolved using vari-
ous GPU performance-aware programming techniques. The proposed fast computation on basic image operations not only 
enhances the computation of diffeomorphic log-demons, but is also potentially extended to speed up many other intensity-
based approaches. Our implementation is open-source on GitHub at https​://bit.ly/2PYZx​Qz.
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Introduction

Image registration is a fundamental process in medical 
image analysis that provides accurate alignment of two 
image datasets. In particular, non-rigid image registration 

allows alignment even with the presence of uncertainties 
such as image distortion, physiological deformation, and 
different imaging modalities. Common clinical applications 
include anatomical atlas reconstruction [1], preoperative 
(pre-op) surgical planning [2], and radiotherapy dose evalu-
ation [3]. Non-rigid registration can also facilitate image-
guided interventions by realigning deformations of soft, pli-
able tissue that is affected by gravity, motion, and tissue–tool 
interaction [4, 5]. Through intraoperative (intra-op) registra-
tion, clinically valuable information from pre-op images, 
such as the surgical roadmap and segmented critical/target 
areas, can be augmented on rapidly acquired intra-op images 
[5]. The importance of intra-op registration can be seen in 
MRI-guided cardiac electrophysiology (EP) [6], where the 
rapid motion of the myocardium can lead to significant 
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pre- and intra-op image misalignment. By intra-operatively 
registering the two image sets, the surgical roadmap can be 
integrated with the real-time electro-anatomical mapping to 
facilitate complete pulmonary vein isolation [7, 8]. However, 
despite the quick and high-resolution imaging of modern 
imaging systems, reliable intra-op registration is still com-
putationally intensive, often requiring time in the order of 
minutes. To be clinically practical, the time for registration 
should be kept below 10 s right after each EP ablative lesion 
created [9]. This would allow for simple integration into 
the surgical workflow, and provide surgeons with up-to-date 
physiological information, e.g., ablation progress.

To date, many registration toolkits employ geometry-
based registration, which relies on detecting, matching, and 
aligning image features to register the image datasets. These 
approaches require significant computation time and can 
have difficulty with feature detection due to high levels of 
noise and artifacts in intra-op images, leading to inaccurate 
registration [10]. Intensity-based registration method, such 
as the Demons algorithm which utilized the pixel values 
to realign a moving image on a static image, is relatively 
robust for non-rigid image registration [7]. Effort has been 
paid to further improve registration efficacy by improving 
the demons algorithm’s convergence and robustness. For 
example, the multi-resolution approach was used to improve 
the algorithm’s performance in registering highly deformed 
images [11]. A number of studies also focused on improving 
the algorithm’s efficacy by remodeling the “demon’s forces” 
[12] and the regularization methods [13]. Diffeomorphism 
was also later introduced to improve the algorithm by pre-
serving image topology at large deformation [14].

Despite the improved robustness of intensity-based algo-
rithms, they are generally slower than geometry-based meth-
ods due to the intensive, iterative calculations involved. In 
addition, the aforementioned improvements to registration 
efficacy often come at the cost of additional computation 
time. For example, the diffeomorphic demons algorithm 
[15] required > 2 min to register a brain image with 10-M 
voxels using two 2.8 GHz quad-core Xeon processors. The 
successor of diffeomorphic demons, the diffeomorphic log-
demons, even reported that it required twice the computation 
although being much more robust and accurate [16].

The primary cause of these extended processing times is 
the computationally expensive voxel-wise operations (e.g., 
convolution and interpolation) requiring high-throughput, 
repeated memory access performed in each demons itera-
tion. The resultant computation demand can even exceed 
the handling capability of conventional central processing 
units (CPUs), which are not optimized for high-throughput 
computation. On the other hand, graphics processing units 
(GPUs) excel at performing high-throughput computation 
due to their parallel and scalable hardware microarchi-
tecture. Several GPU implementations of intensity-based 

registration are reported in [17–19], but their registration 
speed cannot meet the demand of time-critical surgical sce-
narios. For instance, the GPU implementation of 2D dif-
feomorphic demons reported in Huang [18] only yielded a 
20 times speedup compared to an obsolete Pentium 4 CPU, 
and the GPU implementation of ezys (which belongs to a 
wide class of diffeomorphic demons) still required > 35 s 
to register a 3D image dataset at 5-megapixel resolution. 
To our knowledge, there are no reported implementations 
of intensity-based algorithms that can fulfill the strict time 
constraints for intra-op registration.

To this end, we propose a GPU-based optimization frame-
work to minimize the runtime for intensity-based non-rigid 
registration. We apply performance-aware programming 
[20], which is a key method to achieving high-throughput, 
low-latency computation, through systematic exploitation 
of the device and the algorithm. It involves the effective 
employment of different GPU resources, such as computa-
tion units, memory, and data bandwidth to resolve and avoid 
computation bottlenecks. These optimization techniques are 
demonstrated on the well-known diffeomorphic log-demons 
[16] algorithm. This algorithm is chosen as a benchmark not 
only because of its reliability and accuracy, but also because 
it comprises basic image operations, namely interpolation 
and convolution, that are ubiquitous in many other registra-
tion algorithms such that the performance-aware optimiza-
tions employed can be translatable. The main contributions 
of this work are:

•	 Pinpointing, analyzing, and resolving the computation 
bottlenecks of intensity-based non-rigid registration 
using various GPU performance-aware programming 
techniques;

•	 Quantifying the computation enhancement by comparing 
the optimal and sub-optimal GPU implementations of the 
bottlenecking operations; and

•	 Providing an open-sourced library with optimal GPU 
implementation of diffeomorphic log-demons.

Materials and methods

GPU‑based performance‑aware programming

Performance-aware programming is an iterative process 
alternating between profiling and optimization on the bottle-
necking operations. These computation-intensive operations 
could impose a significant challenge in time-critical applica-
tions. This process requires understanding on the bottleneck 
operation of an algorithm, the existence of such bottlenecks, 
and the corresponding techniques to overcome this barrier. 
Therefore, performance-aware programming optimizes 
thread/warp utilization, resource/register allocation and 
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memory access patterns for the best possible performance 
enhancement.

GPUs are specialized hardware originally developed for 
rendering images in a highly parallelized manner. A general 
hardware microarchitecture of a CUDA-compatible devices 
(CUDA device) is presented in Fig. 1a. The basic computa-
tion unit of a CUDA device is the streaming multiprocessor 
(SM), which possesses many CUDA cores. SMs are capable 
of processing concurrent threads efficiently under the Single 
Instruction, Multiple Threads (SIMT) architecture (Fig. 1b). 
In view of achieving high-performance, the 3 essential fea-
tures of CUDA GPUs are: (Feature 1) support of highly 
parallel computation; (Feature 2) efficient memory caching 

through the user-managed cache; and (Feature 3) dedicated 
texture hardware.

Feature 1 is achieved by the dedicated microarchitecture 
of SM which executes the threads in a highly parallel man-
ner. Under the SIMT architecture, the CUDA cores execute 
warps of 32 threads simultaneously under a single fetch-
decode instruction cycle (Fig. 2a). The maximum number of 
warps executable on an SM, known as occupancy, is deter-
mined by the kernel’s demand of computation resources 
such as registers and shared memory. As such, optimizing 
the SM’s occupancy by managing the resources is often 
important.

Fig. 1   Simplified schematic diagram illustrating CUDA hardware and 
software architecture. a CUDA GPU possesses numerous streaming 
multiprocessors as its basic computation units. The streaming mul-

tiprocessors can access the off-chip graphics memory via a heavily 
cached data bus. b Upon kernel execution, a grid of thread blocks 
which consist of numerous threads are instantiated

Fig. 2   Essential features of the 
GPU to achieve high-perfor-
mance computing. a The SM 
can execute warps of 32 threads 
in parallel under SIMT; latency 
can be mitigated by the SM’s 
ability to “switch” between 
eligible warps for concurrent 
execution. b Memory access 
bottlenecks to the global 
memory can be avoided by ① 
pre-fetching the necessary data 
onto the faster shared memory 
for ② scatter or repetitive 
access. The computation results 
can be ③ efficiently transferred 
back to the global memory once 
completed
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Feature 2 can be achieved by the efficient usage of the 
on-chip shared memory on each SM. As accessing the shared 
memory is much (> 80×) faster than the global memory, the 
shared memory can act as an efficient, user-managed cache 
to temporary store any data for computation (Fig. 2b). Effec-
tive use of shared memory can reduce both global memory 
bandwidth and register pressure [21].

Finally, CUDA GPU can benefit from Feature 3 which is 
dedicated to optimizing the texture filtering (interpolation) 
process. As normal 3D interpolation is both arithmetic and 
memory intensive, the GPU’s texture hardware is designed 
to efficiently complete the computation through its opti-
mized hardwired data channels. Thus, the 3D interpolation 
calculation can be accelerated by the texture hardware with 
the trade-off of reduced interpolant precision.

Performance‑aware optimizations

This section describes applying performance-aware opti-
mizations to intensity-based registration, systematically 
exploiting the three GPU features identified in Section II. 
Most demons-based registration algorithms contain com-
plex and iterative operations, such as deformation based 
on concepts of optical flow with small steps. A substantial 
(typ. > 50) amount of demons iteration is therefore required 
to complete the registration, especially when there is large 
misalignment between the images.

We have identified the key computation bottlenecks of 
diffeomorphic log-demons (Algorithm 1), such as vector 
field regularization and diffeomorphic field mapping, which 
are also prevalent in many other intensity-based registra-
tion schemes. Each iteration of diffeomorphic log-demons 
consists of multiple convolution (⋆) and composition/warp-
ing (∘) operations (Fig. 3). Particularly, computation of the 
deformation field using the scaling and squaring method 
(line 7a-d in Algorithm 1) consists of repeated vector field 
self-composition. Regularization of vector field via con-
volution can also be costly. Profiling on the open-sourced 

MATLAB implementation1 showed these two operations 
take up ~ 85% of CPU computation time. Therefore, the com-
putation bottlenecks in (1) vector field regularization (line 4 
& 6 in Algorithm 1) and (2) image warping & field composi-
tion (line 5, 7d & 8 in Algorithm 1) will have to be resolved.

Optimizing vector field regularization

Gaussian filtering (“Gaussian kernel”) is extensively used 
on vector fields as a simplified model of deformation 
propagation [22] and regularization [13]. However, a naïve 
implementation of 3D Gaussian filtering requires access to 
nearby (6�)3 elements for each voxel, involving numerous 
data transactions, especially when � is large. To this end, it 
is common to decompose the demanding 3D convolution 
into three 1D convolutions. The formulation of 1D Gaussian 
kernels ( k[d] ) is shown in (1). The workflow of performing 
multi-pass 3D filtering by a symmetrical kernel on a vector 
field is presented in Algorithm 2.

Fig. 3   Two bottleneck operations in the diffeomorphic log-demons 
algorithm. a, b Convolution  (⋆) of a velocity vector field  (v) by a 
Gaussian kernel (k); c, d Warping (∘) of a is moving image (M) by a 

deformation field (s) Source of sample image data: The Cancer Imag-
ing Archive (TCIA)

1  Available on: https​://www.mathw​orks.com/matla​bcent​ral/filee​xchan​
ge/39194​-diffe​omorp​hic-log-demon​s-image​-regis​trati​on.

https://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-demons-image-registration
https://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-demons-image-registration
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x-pass filtering The voxel-independency of multi-pass 
Gaussian filtering facilitates the use of Feature 1 for paral-
lel computation. To alleviate memory contention, the shared 
memory on the SMs (Feature 2) can be used to actively pre-
fetch and reuse the data that are nearby spatially localized. 
However, as illustrated in Fig. 4a(i), the convolution opera-
tion requires access to the active pixels in addition to its 
local neighbor memory elements (the “halo”) for computa-
tion. Overlapping of such “halo” results in redundant global 
memory access which undermines efficiency (Fig. 4a(ii)). 
This overlapping can be eliminated by instantiating thread 
blocks and shared memory with size equal to x-dimensions 
of the image (Fig. 4a(iii)).

y/z-pass filtering Pre-fetching data requires striding the 
memory which the L2 cache will often struggle to handle. 

(1)k[d] =
1

�

√

2�
exp

�

−
d
2

�
2

�

, d = {0, 1,… , nint(3�)}

Fig. 4   Essential performance-aware programming techniques for 
optimizing the convolution operation on a vector field. a The con-
volution operation requires loading additional memory items in 
“halo” regions around the active pixels for computation for each 
thread block. Redundant memory access due to overlapping of the 
halo regions by the blue and green thread blocks can be mitigated by 
instantiating suitable block dimensions. b Slander blocks along the 

y- and z-direction can cause the loss of memory coalescence (thread 
blocks in red), which can be rectified by instantiating appropriate 
x-dimension (blocks in yellow). (c) Instruction-level parallelism can 
be used to allow the treads to be re-used to cover the whole area-of-
interest in an iterative manner. Such technique is useful in reducing 
the overall number of threads in compliance to the GPU hardware 
limitation
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Furthermore, instantiating the thread blocks and shared 
memory with size equal to the y-/z-dimensions will result 
in bandwidth under-utilization due to the lost of 128-byte 
memory coalescence (Fig. 4b(i)). To assign appropriate 
x-dimensions to the thread blocks is important to restore 
the 128-byte coalescence (Fig. 4b(ii)). However, such 
strategy increases the required number of threads per block 
by 32-fold which can exceed the hardware limit imposed 
by the SM. To this end, instruction-level parallelism can 
be utilized, which allows a single thread block to cover 
the whole area-of-interest in an iterative manner (Fig. 4c).

Finally, the memory latency associated with pre-fetch-
ing necessary data onto the shared memory can be further 
reduced by micro-optimizations such as temporarily casting 
the variables into vectorized format (e.g., float4). Fetching 
vectorized data facilitates the generation of more efficient 
PTX instructions. For instance, loading a float4 vector from 
the global memory can be achieved by a single ld.global.
v4.f32 instruction, which is faster than executing multiple 
ld.global.f32 instructions.

Optimizing image warping and vector field 
composition

Warping/composition operations (Algorithm 3) are manda-
tory in the diffeomorphic log-demons algorithm for obtain-
ing the intermediate moving image in each iteration. Vector 
field composition (Algorithm 4) is essential for updating the 
velocity field and deformation field. Both operations share 
the same operator (∘) which applies a deformation field 
through trilinear interpolation.

The inherent voxel independency of the image warping 
and vector field composition makes the algorithm highly 
parallelizable. However, warping an image by a nonparamet-
ric vector field implies inevitable scatter, cache-unfriendly 
memory access. As such, only a fraction of the 128-byte 
coalesced data batch may be useful to the SM, which can 
induce tremendous latency. Worse still, trilinear interpola-
tion requires data from the 8 nearby elements around the 
query point. These elements, despite located in 3D proxim-
ity, are separated by large strides on the 1D memory array. 
As a result, attempts to fetch nearby data along the y-/z-
directions will incur extra latency due to cache misses.

The GPU can also utilize its underlying texture hardware 
(Feature 3) to improve memory access performance. Above 
all, the GPU’s texture cache excels in fetching 3D spatially 
localized elements. The hardware managed “pitched” point-
ers are also capable of resolving any potential memory mis-
alignments. This feature is particularly useful because the 
texture references can be updated to allow fast read-only 
access to the 3D spatially localized elements.

Optimization to other parts of computation

Albeit not being the major computation bottleneck, many 
other operations in diffeomorphic log-demons are also eligi-
ble for GPU acceleration. For example, optimizing SM occu-
pancy ensures the full use of the GPU. Enforcing memory 
alignment with respect to the 128-Byte L1 cache can be 
beneficial to all Global-L1 memory transection, which can 
be further optimized by temporarily type-casting an array 
into vectorized variables [23]. The use of the keyword, 
“__restrict__”, may allow the compiler to generate more 
efficient codes that disregard any provision to the pointer 
aliasing [24] issue, as the keyword guarantees no overlap 
between separate memory segments. Other optimization 
such as resolving thread divergence and utilizing the GPU’s 
hardwired functions by enabling the –use_fast_math com-
piler flag can also yield additional improvement.
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Results

We quantify the performance enhancement brought by per-
formance-aware programming techniques by comparing 
different implementations of the bottleneck operations in 
diffeomorphic log-demons. All experiments are performed 
using a PC equipped with Intel i7-4790 CPU (3.6 GHz) and 
a Nvidia GTX Titan X GPU. The code was compiled in 
the -O3 optimization level for higher performance [25]. A 
collection of sample brain MRI image is acquired from The 
Cancer Imaging Archive (TCIA) [26] for the benchmarking 
purpose. The velocity vector fields used for the experiment 
is obtained by registering a pair of pre-/post-deformed brain 
MRI image using diffeomorphic log-demons. The effect of 
varying input dimension is investigated by up/down-sam-
pling the vector fields into 7 levels of resolutions, ranging 
from 1.3 to 37-M voxels. To avoid host-device memory 
transaction interfering with the results, all necessary data 
are transferred to the GPU graphics memory prior to the 
experiments.

Optimizing vector field regularization

Feature 1 and Feature 2 are used to optimize the vector 
field regularization. To systemically evaluate the effective-
ness of these optimizations, three implementations of Gauss-
ian smoothing on a vector field are developed, namely:

	A1.	 Naïve implementation without any data reuse;

	A2.	 Employing data reuse by the shared memory; and
	A3.	 Initializing the shared memory with coalesced global-

shared memory transactions.

The variance of the Gaussian kernel is set to 3, which is 
a typical value for regularization. Among the 3 implementa-
tions, A1 is the naïve implementation that solely utilizes the 
GPU’s ability of parallel processing (Feature 1). A2 and A3 
attempted to make use of the shared memory (Feature 2) for 
effective caching; however, A2 does not consider coalesced 
memory transaction during the initialization (Fig. 4b(i)). 
A3 ensures memory coalescence during the initialization 
by assigning appropriate block dimensions (Fig. 4b(ii)).

Figure  5a presents the time required for the single-
threaded CPU and the 3 GPU implementations to complete 
the regularization process. The CPU requires 100 ms to 
complete the smoothing computation for the smallest 1.3-M 
voxels vector field, and 3500 ms to complete a large vector 
field (37-M voxel). In contrast, the GPU can perform the 
computation significantly faster than the CPU. Implementa-
tion A1 achieves the same computation within 5 to 500 ms. 
The performance further increases significantly when data 
reuse techniques are employed. The optimal implementa-
tion, A3, can complete the computation within 0.9–13.5 ms, 
which is 170–250 × faster than the CPU.

Despite both A2 and A3 make uses of the shared mem-
ory as a user-managed cache for fast Gaussian convolution, 
the two implementations show a large disparity in terms of 
performance. Implementation A2 struggles in performing 

Fig. 5   a Run-time required for 
CPU and the three different 
GPU implementations in order 
to compute the convolution 
on a vector field at 7 levels of 
resolution. b, c Breakdown of 
run-time of implementations, 
Imp. A2 and A3, required to 
complete the x-/y-/z-passes 
of the convolution. Convolu-
tion at the z-direction takes up 
most runtime especially at high 
resolution
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the z-pass filtering (Fig. 5b, c), particularly at high vector 
field dimension. As the vector field dimensions increases, a 
larger memory stride will be required fetch data across the 
z-direction. For example, at 26-M (278 × 334 × 278) voxels, 
memory strides of 278 × 334 × size of (float) = 363 KB is 
required. As the L2 size on each memory controller of the 
Titan X GPU is only 512 KB, the L2 hit rate decreases dras-
tically at high dimensions. The caching efficiency can be 
improved by ensuring coalesced global memory transaction 
as in implementation A3. Despite striding is still required, 
coalesced data can be fetched simultaneously without the 
need of issuing additional read instruction. This can improve 
the bandwidth utilization, which can be reflected by the 
achieved global memory bandwidth and speed-up (Fig. 6a, 
b).

Optimizing image warping/vector field composition

The GPU can utilize Feature 1 and Feature 3 to accelerate 
image warping and vector field composition. Performance 
enhancement of vector field composition will be studied, 
as it is an extension of warping. Similar workflow will be 
adopted in the evaluation of the four implementations to 
perform the composition, namely:

	B1.	 Kernel interpolation on the global memory;
	B2.	 Kernel interpolation on global memory via the texture 

data paths;
	B3.	 Hardwired interpolation using the texture hardware; 

and
	B4.	 Hardwired interpolation on vectorized elements.

Implementation B1 is the naïve implementation of the 
vector field composition and only utilizes the parallel com-
putation power GPU (Feature 1) to perform the interpo-
lation. Implementations B2–B4 utilize the GPU’s texture 
hardware (Feature 3) to accelerate the computation. First, 
implementation B2 makes uses of the texture data path to 
fetch the 3D spatially localized elements for interpolation. 

Implementation B3 further utilizes the texture filtering hard-
ware by accessing the cudaTextureFilterMode option in the 
texture descriptor for fast interpolation. Finally, implementa-
tion B4 extends B3 by fetching and filtering the elements in 
a coalesced manner using vectorized data types (i.e., float4).

Figure 7a presents the comparison of computation time 
required to perform a vector field composition. Figure 7b 
presents the achieved computation enhancement by dif-
ferent GPU implementations. All GPU implementations 
achieve significant computation speed-up compared to 
the CPU. Implementation B1 achieves the worst perfor-
mance enhancement due to the lack of memory optimiza-
tion. Strided memory access required to perform voxel-
wise interpolation occupy substantial memory bandwidth. 
Despite L2 cache can relieve the global memory bandwidth 
stress, numerous fetch requests from the SM can saturate the 
memory bandwidth between L1 and L2 caches. This can be 
reflected by the fact that the achieved L1–L2 bandwidth for 
implementation B1 remained all-time high (Fig. 8a). Thus, 
this high latency induced by memory contention on the 
L1–L2 data channel undermines the efficiency and utiliza-
tion of the global memory (Fig. 8b). It is also noteworthy 
that the achieved global memory bandwidth increases at 
higher vector field dimension, which can be accounted for 
the latency-mitigating ability of the extra warps launched for 
voxel-wise interpolation.

Implementation B2–B3 utilize the GPU’s texture caches 
to resolve the L1–L2 memory contention and improve the 
L2-global memory bandwidth utilization. B3 further miti-
gates the arithmetic load requirement of interpolation by 
offloading to the dedicated texture mapping unit. However, 
the computation speed-up shows an interesting phenom-
enon: both implementations achieve better performance at 
lower vector field dimensions, but the performance drops 
and levels off at the high dimension. B2 achieves ~ 350 
times speed-up; B3 achieves ~ 440 times speed-up at low 
resolution. However, the performance speed-up achieved 
by both implementations falls to ~ 320 × at high vector field 
dimension.

Fig. 6   a Achieved global mem-
ory bandwidth, and b resulting 
speed-up achieved by the three 
different GPU implementations
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We hypothesize that the global memory may be limit-
ing the computation at high dimension. It is noted that both 
implementations achieved higher L1–L2 bandwidth at low 
vector field dimension (Fig. 9b). The increased L1–L2 activ-
ity signifies high L2 hit rate. At low vector field resolution, 
the L2 cache is able to hold a larger portion of the vector 
field which mitigates global memory latencies. As the vec-
tor field dimension increases, subsequent decreases in L2 
hit rate incur much more global memory transactions that 
cause contention on the memory controller. Such conten-
tion on the memory controller is resolved by implementation 
B4, which restructures the elements into an array of vector-
ized variable during data transections. Fetching vectorized 
elements reduces the number of transaction requests to the 
memory controller, thus alleviating the memory contention. 
As a result, overall higher global memory bandwidth utiliza-
tion is observed, with ~ 470 times speed-up at low resolution 
and ~ 380 times speed-up at a higher resolution in imple-
mentation B4.

Overall optimization results

We have implemented the entire pipeline of the algorithm 
with different performance-aware programming strategies, 
as stipulated in Table 1. As a result, our optimized GPU 
implementation of diffeomorphic log-demons achieved 
an impressive computation enhancement compared to the 
CPU. The GPU implementation is also validated to ensure 
it behaves consistently along with the CPU implementation 
(Fig. 9a-b). Figure 9c presents the run-time to register the 
MRI brain images in 7 levels of resolutions with the same 
parameters by CPU and GPU. The CPU requires prolonged 
computation to register the images. Even with the small-
est dataset, namely a pair of 1.3-M voxel images, the CPU 
requires ~ 27 s to complete the registration. Efficient utiliza-
tion of GPU reduces the registration time to 286 ms. As 
the dataset resolution increases, the CPU run-time gradually 
increases. Registering the highest resolution (37-M voxels) 
requires > 2200 s (36 min) which is prohibitively long for 

Fig. 7   a Run-time required for 
CPU and the four different GPU 
implementations to compute 
the composition on a vector 
field at 7 levels of resolution. b 
Achieved computation speed-up 
with those fours

Fig. 8   The achieved a L1–L2 
bandwidth, and b L2-Global 
memory bandwidth by the four 
different GPU implementations
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many applications. The GPU implementation is able to 
complete the registration of highest resolution in 8,561 ms, 
suggesting the computation time can be diminished with our 
optimized GPU implementation.

The parallel processing ability of the GPU consistently 
provides high computation throughput for diffeomorphic 
log-demons. However, host-device overhead in GPU ini-
tialization takes up substantial computation time. At low 
resolution, more than half of the runtime (166 ms/286 ms) 
is spent on allocating memory onto the GPU. At high reso-
lution, this overhead diminishes as the computation time 

increases (1500 ms/8561 ms). The computation speed-up 
increases from ~ 95 times at low resolution to ~ 258 times 
speed-up at high resolution.

Figure 9d presents the time consumption breakdown by 
the key computation steps in the optimized GPU imple-
mentation. The time consumed by the previously identified 
computation bottleneck, namely vector field regularization 
and deformation field computation, is now comparable to 
other operations. The reduced computation time occupied 
by the two computation steps suggests the bottlenecks have 
been resolved.

Fig. 9   a, b Checkerboard images showing the large misalignment 
between the fixed and moving image pair has been resolved in the 
registered image. Negligible MSE between the CPU and GPU results 
suggests the two implementations are consistent. c Run-time required 
for CPU and our optimized GPU implementation of diffeomorphic 

log-demons to complete the registration. A promising acceleration 
with two orders of magnitude over a CPU is achieved. The GPU 
initialization overhead is illustrated by the dotted line in purple. d 
Breakdown of the runtime of the key computation steps as presented 
in Algorithm 1. Source of image data: TCIA

Table 1   Optimization strategies 
used in the performance-aware 
implementation

Computation Bottleneck Optimization strategies

Finite image difference Memory Optimized parallelization (Feature 1)
Code micro-optimizations

Gradient decomposition Memory Optimized parallelization (Feature 1)
Efficient user-managed cache (Feature 2)

Gaussian convolution Memory Optimized parallelization (Feature 1)
Efficient user-managed cache (Feature 2)
Code micro-optimizations

Image warping/field composition Memory/computation Optimized parallelization (Feature 1)
Use texture hardware (Feature 3)

Update field computation Computation/control flow Optimized parallelization (Feature 1)
Code micro-optimizations

Maximum/sum reduction Algorithm Kernel decomposition
Code micro-optimizations
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Discussion and conclusion

We proposed several optimized computation enhancements 
on intensity-based registration algorithms using various 
GPU performance-aware programming techniques, and 
quantified the enhancements by comparing the optimal and 
sub-optimal GPU implementations. The optimization tech-
niques are demonstrated on a benchmark intensity-based 
registration algorithm, the well-known diffeomorphic log-
demons algorithm, to pinpoint, analyze, and resolve the com-
putation bottleneck in each computation step. Convolution 
and composition/warping are common yet slow voxel opera-
tions, which are ubiquitous in many other intensity-based 
registration algorithms. In this regard, we conducted com-
prehensive testing to optimize thread/warp utilization and 
memory access patterns such that the bottlenecking opera-
tions can be resolved. By utilizing appropriate GPU features, 
we have achieved significant acceleration: ~ 250 times for 
convolution and ~ 380 times for composition/warping. Over-
all, our GPU implementation of diffeomorphic log-demons 
has achieved ~ 200 times speed-up. This outstanding per-
formance enhancement also enables the algorithm to have 
similar, if not shorter, registration time with many popular 
registration packages such as SPM [27] and elastix [28].

Having accelerated basic image operations does not only 
enhance the diffeomorphic log-demons, but also can poten-
tially speed up many other demons-based approaches, such 
as spherical demons [29], adaptive demons [30]. However, 
implementing these fully optimized algorithms can involve 
tremendous efforts. In this regard, we have developed an 
open-source version of the optimized diffeomorphic log-
demons which is available at GitHub. This facilitate the 
translation to other intensity-based registration algorithms 
using the similar voxel-based operations and serve as a base-
line for future comparison. Our implementation is cross-
platform compatible. To incorporate our work for open-
source library such as ITK [31], a wrapper is also provided 
for DICOM images loaded in ITK to call our implementation 
and perform the registration. This library will also be incor-
porated as a module to other open-source medical imaging 
processing platforms, e.g., ITK [31] and 3D Slicer [32] and 
in the future. As many advanced intensity-based image reg-
istration algorithms share similar workflow involving voxel-
wise interpolation and convolution operations, our estab-
lished acceleration schemes can be translated effortlessly to 
boost the performance. This optimized GPU implementation 
also enables the use of the diffeomorphic log-demons algo-
rithm in many time-critical applications.
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