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Abstract Most origamis are composed of triangular

and quadrilateral facets. Since creases are practically

straight, facets can be modelled as 3-node triangles

(T3) and 4-node quadrilaterals (Q4) with translational

nodal dofs only. While bending is not possible in T3, a

corotational consideration is employed to quantify the

bending deformation in Q4 under large displacement/

rotation but small strain/curvature. The pertinent

tangential stiffness matrix turns out to be a simple

constant matrix. Meanwhile, the fold angle of the

crease is computed by the dot product of two vectors

connecting the crease and nodes defining the adjacent

facets. Derivatives of the fold angle are considerably

simplified by invoking the small strain/curvature

behaviour of the facet. To manoeuver the origami

from its initial to final configuration, rest angles

defining the zero energy states of the creases are

changed to their target values incrementally. The

proposed methods of quantifying the bending defor-

mation in Q4 and the derivative of the fold angle are

implemented in a commercial software using two

user-defined element subroutines. They together with

the built-in 3D membrane elements realize the simu-

lation and analysis of origami in a finite element

environment. Furthermore, the element for modelling

the crease is equally applicable to modelling spring-

loaded hinges.

Keywords Origami � Corotational method � Finite
element � Crease � Fold angle � Elastic hinge

1 Introduction

Origami is an art of paper folding that turns flat pieces

of paper into 3D structures. Origamis exhibit interest-

ing shape morphing and have inspired numerous

applications in engineering such as deployable space

solar sails (Miura 1985; Zirbel et al. 2013), novel

mechanisms (Zhang and Chen 2018; Nelson et al.

2019), energy-absorbing devices (Ma and You 2013;

Lee et al. 2019), meta-materials (Schenk and Guest

2013; Zhai et al. 2018; Pratapa et al. 2019), etc. To

date, polyhedral origamis composing of triangular and
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quadrilateral facets are most widely used in engineer-

ing. The deformation of origami involves that of the

facet and crease folding. General speaking, the facet

undergoes large displacement large rotation but small

strain and, if possible, small curvature. To simulate the

origami deformation, a classical approach is to adopt

the rigid facet assumption in which only crease folding

is allowed (Tachi 2009; Wei et al. 2013). The

deformed configuration can be obtained efficiently at

the expense of setting up geometric constraints which

often requires a high level of mathematical skill.

Recent emphasis on origami modelling is on deform-

able facets and elastic creases. The finite element

method widely used in the structural analysis has been

considered in crushing analysis and the facets can

readily be modelled as plate/shell elements (Ma et al.

2018; Song et al. 2012). However, there are a few

obstacles for analyzing origamis which can fold and

unfold repeatedly using the finite element method.

Firstly, plate/shell elements with rotation dofs are

quite often slow in convergence in large rotation

analyses, probably because finite rotation is not

commutative and special treatment is required to

update the rotation (Crisfield 2000). Partly because of

this reason and partly because 3D constitutive models

can be directly adopted, considerable research effort

has gone into solid-shell elements (Park et al. 1995;

Kim and Lee 1988; Bischoff and Ramm 1998;

Hauptmann and Schweizerhof 1998; Sze et al. 2002;

Sze 2002; Kim et al. 2003, Bischoff et al. 2018;

Kulikov and Plotnikova 2008) and other rotation-free

elements (Guo et al. 2002; Flores and Oñate 2011;

Zhou and Sze 2012) which possess only translational

dofs. As an illustration, the popular benchmark

problem in which a slit annular plate with inner radius

6 and outer radius 10 (Sze et al. 2004) meshed into

6 9 30 elements is analyzed by using the four-node

shell element models S4 and S4R as well as the 8-node

solid-shell element model SC8R of ABAQUS. A line

force is applied at the free end of the radial slit while

the other end of the slit is fully clamped. Figure 1

shows the undeformed and the final deformed config-

urations at the maximum line force at 0.8 unit of force

per unit length. The default time increment in

ABAQUS is adopted, i.e., the initial, minimum, and

largest time increment sizes are 1, 10–5, and 1,

respectively. The default automatic time increment

option, see the first paragraph in Sect. 5, is employed.

The analyses were conducted in a laptop PC with

Intel(R) Core(TM) i9-9880H CPU (8 cores,

2.30 GHz) and 64 GB RAM. The predictions of S4,

S4R and SC8R are practically identical. The analysis

data are given in Table 1. It can be seen that SC8R

consumed far less number of time increments, number

of iterations and CPU time than the S4 and S4R shell

element models. Another example comparing S4R and

SC8R can also be found in Sect. 5.1.

The thickness, elasticity modulus and Poisson’s

ratio of the plate are 0.03, 21 9 106 and 0,

respectively.

Fig. 1 a The undeformed and b the final deformed mesh of the slit annular plate problem
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Secondly, the elastic hinge needed for modelling

the elastic crease is not readily available in most, if not

all, commercial finite element programs. Taking

ABAQUS as an example, it provides 3 types of spring

elements, i.e., SPRING1, SPRING2 and SPRINGA.

SPRING1 is a grounded spring defined by only one

globally or locally defined dofs. SPRING2 can con-

nect any two globally or locally defined dofs. In

principle, an elastic hinge can be realized by coupling

two local rotations defined about the hinge using

SPRING2. However, ABAQUS requires the local

coordinate system used to define the local rotation to

be fixed even in large displacement analysis. How-

ever, creases in origamis undergoing large displace-

ment and their orientations vary. SPRINGA can adopt

the line between two end nodes as the axis which can

rotate and translate in large displacement analysis but

it can only model extensional/compressive springs.

Thirdly, modelling origami with plate/shell ele-

ments with rotational dofs will couple the nodal

rotations and the hinge angles. A possible workaround

is to define the nodes of adjacent plate/shell elements

at the same crease vertex and constrain the equality of

the nodal translations. The drawback of this approach

can be understood by considering, e.g., a crease vertex

shared by 4 facets. While the 3 9 4 translational dofs

can be trimmed down to 3 by constraints, the 3 9 4

rotational dofs remain active. In the origami simula-

tion methods to be reviewed below, there are only 3

translation dofs per node. The impact of using 15

instead of 3 dofs per crease vertex on the computa-

tional efficiency can be considerable.

The bar-hinge approach can be regarded as a

simplified finite element method which can consider

deformable facets and elastic creases (Schenk and

Guest 2011). In the model, the origami is first

represented by a network of bar or truss elements

along creases with the element nodes at the endpoints

of creases only. Without introducing additional nodes,

quadrilateral or higher-order polyhedral facets are

then divided into triangles by additional bar elements.

The membrane deformation, also known as the

shearing/stretching deformation and in-plane defor-

mation, is accounted for by the axial deformation of

the bar elements. All inter-facet and intra-facet bar

elements are also elastic hinges whilst the stiffness of

the latter is derived from the bending stiffness of

facets, respectively (Schenk and Guest 2011; Filipov

et al. 2017; Gillman et al. 2018). The dihedral angle of

the crease is an inverse sine or cosine function of the

displacements at nodes defining the adjacent facets.

Thus, derivatives of the dihedral angle contain the

cosine or sine function in the denominator. The 0/0,

zero divided by zero, points need to be removed by

expressing the derivatives using algebraic terms (Liu

and Paulino 2017; Schenk and Guest 2011; Bekker

1996). To avoid the complication, the arctan2 func-

tion, instead of arccos or arcsin functions, was also

suggested for computing the dihedral angle at the

expense of using two arguments in the function

(Gillman et al. 2018). To trace the large displacement

which may involve bistability and bifurcations,

advanced solution techniques have also been incor-

porated into the bar-hinge models. Other features such

as material nonlinearity, fold stiffness with penalty

near the fully-folded state to avoid penetration can also

be noted (Liu and Paulino 2017; Gillman et al. 2018).

Recently, the bar-hinge models have been adopted to

uncover some unique mechanistic properties of the

origami structures (Grey et al. 2019; Liu et al. 2019).

This paper develops a simplified FEM approach in

which the origami is modelled by ad hoc developed

bending and elastic crease elements. Since origamis

with pentagonal and higher-order polygonal facets are

seldom used in engineering applications, triangular

and quadrilateral facets are considered here. Each of

these facets would be modelled by 3-node triangle

(T3) or 4-node quadrilateral (Q4) with only

Table 1 Analysis data for different element models in the slit annular plate problem in Fig. 1

Total no. of time increments Total no. of iterations CPU time The first time incrementa The smallest time increment

S4 58 409 9.9 s 0.00390625 0.00390625

S4R 64 913 15.0 s 0.015625 0.000976563

SC8R 27 186 3.6 s 0.0625 0.0263672

aThis is the first time increment using which the convergence can be attained
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translational nodal dofs. The membrane deformation

in T3 and Q4 can be accounted for by any geometric

nonlinear 3D membrane elements of the same nodal

configurations. Since creases are practically straight

due to the large membrane stiffness of the adjacent

non-coplanar facets, bending deformation is not

possible in T3 facet whilst there is only one bending

deformation mode in the Q4 facet. In this light, a Q4

bending element is developed based on the corota-

tional concept. Under the large-displacement, large-

rotation but small strain small curvature assumption, it

will be shown that the bending deformation mode can

be quantified by the distance between the two straight

lines connecting the opposite corners of the quadri-

lateral. A point of remark is that the two straight lines

lie on the flat Q4 facet but would detach from the facet

when the facet becomes curved. The salient feature of

the elastic energy in the Q4 bending element is that it is

quadratic in nodal displacements. Thus, the pertinent

tangential stiffness matrix is a constant which does not

needs to be updated in the iterative solution process.

For the elastic energy in the crease, a 4-node crease

element is derived in which the dot product of two

vectors connecting the crease and the adjacent nodes

are used to determine the fold angle which is the

complement of the dihedral angle of the crease. A

similar way of computing the dihedral angle can be

noted in (Bekker 1996). Here, the large-displacement

but small-strain and small-curvature assumption for

the facet is invoked to simplify the derivatives of the

fold angle with respect to the nodal displacement. The

4-node crease element is equally applicable to model

elastic hinges or, equivalently, hinges loaded with

torsional springs. To manoeuver the origami into its

deformed configuration, the rest angles which define

the zero elastic energy states of the creases are

changed to their target values incrementally.

The presented Q4 bending element and the 4-node

crease element are implemented in ABAQUS thru two

user-defined element subroutines. They together with

the nonlinear T3 and Q4 3D membrane elements in

ABAQUS realize the origami simulation in a finite

element environment. Examples are presented to

validate the two developed elements for modelling

elastic hinges, origami, and kirigami structures.

2 Facet modelling

It will be assumed as in the bar-hinge approach that

creases are straight and nodes carrying the dofs in the

computation are located only at the endpoints of

creases. As specified earlier, only triangular and

quadrilateral facets will be considered. Unlike the

bar-hinge approach, facets are treated as 2D continua

and the material properties can be directly used in the

computation.

2.1 Membrane deformation

The membrane deformation of the triangular and

quadrilateral facets can be considered by any geomet-

ric nonlinear 3D T3 and Q4 membrane elements,

respectively. Since ABAQUS does not have solely

geometric nonlinear membrane element, its M3D3 T3

and M3D4 Q4 3D membrane elements for general

nonlinearity are employed whilst the material is taken

to be linear elastic and isotropic. In the two elements,

membrane deformation is quantified by the in-plane

logarithmic strain. Though logarithmic strain is

unnecessarily complicated for small strain problems,

M3D3 and M3D4 are adopted because ABAQUS does

not display the user-defined element in its post-

processor. The presence of the adjacent non-coplanar

facets allows one to assume that the creases are

straight due to the large membrane stiffness. The

assumption implies the T3 facet cannot be bent and it

is not necessary to consider its bending deformation.

For the Q4 facet, the following subsection will derive a

method to quantify the bending deformation under

large displacement large rotation but small strain and

small curvature assumption using a corotational

consideration.

2.2 Bending deformation of quadrilateral facet

Figure 2 shows the initial, corotated and deformed

configurations of a quadrilateral facet. In the initial

configuration, the element is flat whilst P and Q are the

overlapping points along the straight lines 1–3 and 2–

4, respectively. The deformed and corotated configu-

rations are obtained from initial configuration through

respectively the displacement U and a rigid body

displacement Uc defined with respect to the global

coordinate (X, Y, Z). The location of node/point i (= 1,

2, 3, 4, P and Q) in the two configurations are denoted
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by i’ and ic. Since Uc is a rigid body displacement, 1c–

2c–3c–4c is flat whilst Pc and Qc remain overlapping. A

local Cartesian coordinate system (x, y, z) is set up in

the initial configuration and becomes (xc, yc, zc) in the

corotated configuration. Thus, the two sets of nodal

coordinates (xi, yi) and ðxc
i ; yc

i Þ are identical. The

deformed configuration can be obtained from the

corotated configuration through the displacement

u = {u,v,w}T defined with respect to (xc, yc, zc) of

unit vectors (ec
x,e

c
y,e

c
z) defined with respect to (X,Y,Z),

i.e.

U ¼ Uc þ ½ec
x; e

c
y; e

c
z �

Tu ð1Þ

The rigid body displacement Uc is chosen such that

it brings 1c–2c–3c–4c close to 10–20–30–40 such that the
small displacement assumption is applicable to u for

deriving the strain and curvature. Its idea is similar to

the approach for deriving curvatures in fabric mate-

rials (Sze and Liu 2009; Zhou and Sze 2012).

The interpolated (xc, yc) and u in terms of the

parametric coordinates of the element n,
g [ [- 1, ? 1] can be expressed as

xc

yc

� �
¼
X4
i¼1

Ni

xc
i

yc
i

� �
¼
X4
i¼1

Ni

xi

yi

� �

¼
a0 þ a1nþ a2ngþ a3g

b0 þ b1nþ b2ngþ b3g

� �

u ¼
u

v

w

8><
>:

9>=
>; ¼

X4
i¼1

Niui ¼
X4
i¼1

Ni

ui

vi

wi

8><
>:

9>=
>;;

ð2a; bÞ

where

N1

N2

N3

N4

2
664

3
775 ¼ 1

4

ð1� nÞð1� gÞ
ð1þ nÞð1� gÞ
ð1þ nÞð1þ gÞ
ð1� nÞð1þ gÞ

2
664

3
775;

a0 b0

a1 b1

a2 b2

a3 b3

2
664

3
775 ¼ 1

4

þ1 þ1 þ1 þ1

�1 þ1 þ1 �1

þ1 �1 þ1 �1

�1 �1 þ1 þ1

2
664

3
775

x1 y1
x2 y2
x3 y3
x4 y4

2
664

3
775:

It can be checked that the deformed element edge,

at n = ± 1 or g = ± 1, is linearly interpolated from

the two edge end nodes. Hence, the straight crease

assumption is always fulfilled by the element. From

the interpolation in (2a), the chain rule of differenti-

ation can be derived as

Fig. 2 a Initial, corotated and deformed configurations of the Q4 bending element, b P and Q are along the diagonals in the initial

configuration
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o

oxc
¼ 1

j
ðb2nþ b3Þ

o

on
� ðb2gþ b1Þ

o

og

� �
;

o

oyc
¼ 1

j
�ða2nþ a3Þ

o

on
þ ða2gþ a1Þ

o

og

� �
;

ð3Þ

in which j ¼ oxc

on
oyc

og � oxc

og
oyc

on ¼ j0 þ j1nþ j2g is the

Jacobian determinant and

j0 ¼ a1b3 � a3b1; j1 ¼ a1b2 � a2b1;
j2 ¼ a2b3 � a3b2:

The 3D Q4 element possesses 12 dofs and 6 rigid

body modes. Hence, the element possesses 6 defor-

mation modes among them 5 are membrane deforma-

tion modes. For a square element on the xc–yc–plane

and with edges parallel to the xc- or yc-axis, the five

membrane deformation modes are

u ¼
xc

0

0

8<
:

9=
;; u ¼

0

yc

0

8<
:

9=
;; u ¼

yc

xc

0

8<
:

9=
;;

u ¼
xcyc

0

0

8<
:

9=
;; u ¼

0

xcyc

0

8<
:

9=
;:

ð4Þ

The remaining deformation mode is a bending

mode. By applying the differential operator to the

interpolated w in (2b), the following curvature com-

ponents can be worked out

o2w

o2xc
¼ � ðb2nþ b3Þðb2gþ b1Þ

j3
j0Dw;

o2w

o2yc
¼ �ða2nþ a3Þða2gþ a1Þ

j3
j0Dw

2
o2w

oxcoyc
¼ ða1nþ a2ngþ a3gÞb2 þ ðb1nþ b2ngþ b3gÞa2 þ a1b3 þ a3b1

j3
j0Dw

ð5Þ

where

Dw ¼ j0 þ j1 þ j2
2j0

w1 þ
�j0 þ j1 � j2

2j0
w2

þ j0 � j1 � j2
2j0

w3 þ
�j0 � j1 þ j2

2j0
w4: ð6Þ

Hence, the bending mode is featured by Dw. To

stabilize the bending mode, it would be sufficient to

evaluate the bending energy using one point quadra-

ture which samples the curvature at n = g = 0. Effec-

tively, one takes

o2w

o2xc
¼ �b3b1

j20
Dw;

o2w

o2yc
¼ �a3a1

j20
Dw;

2
o2w

oxcoyc
¼ a1b3 þ a3b1

j20
Dw:

ð7Þ

For most papers, it is reasonable to assume isotropy.

Thus, elastic energy of the Q4 bending element is

Ub ¼ 1

2
D

Zþ1

�1

Zþ1

�1

o2w=o2xc

o2w=o2yc

2o2w=oxcoyc

8><
>:

9>=
>;

1 m 0

m 1 0

0 0 ð1� mÞ=2

2
64

3
75

o2w=o2xc

o2w=o2yc

2o2w=oxcoyc

8><
>:

9>=
>;jdndg ¼ De

2
ðDwÞ2

ð8Þ

where D = Eh3/(1-m2)/12 is the bending rigidity, E is

the elastic modulus E, m is the Poisson’s ratio, h is the

paper thickness and De ¼ 2D½2ðb3b1 þ a3a1Þ2þ
ð1� mÞj20�=j30. More complicated material models can

also be considered.

A physical interpretation of Dw in (7) is then

identified by referring to points Pc and Qc in Fig. 2b.

As a point of remark, Pc is along 1c–3c, Qc is along 2c–

4c and the two points are intersecting. It can be solved

that

xc
P

yc
P

� �
¼ xc

Q

yc
Q

� �
¼ xP

yP

� �
¼ xQ

yQ

� �

¼ 1

j0

a0j0 � a1j1 � a3j2
b0j0 � b1j1 � b3j2

� �
: ð9Þ

Now, u of Pc is linearly interpolated from those at 1c

and 3c whilst the displacement of Qc is linearly

interpolated from those of 2c and 4c. Thus,

uP � uQ ¼
uP � uQ

vP � vQ

wP � wQ

8<
:

9=
;

¼ l1Pu3 þ lP3u1
l13

� l2Qu4 þ lQ4u2
l24

¼ M1u1 þ M2u2 þ M3u3 þ M4u4 ð10Þ

where lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
and M1 ¼ lP3

l13
;

;2 ¼ � lQ4

l24
; M3 ¼ l1P

l13
; M4 ¼ � l2Q

l24
. Recalling.

l1P

l13
; lP3

l13

� �
¼ x1�xP

x1�x3
; xP�x3

x1�x3

� �
for x1 6¼ x3,

l1P

l13
; lP3

l13

� �
¼

y1�yP

y1�y3
; yP�y3

y1�y3

� �
for y1 6¼ y3,

l2Q

l24
;

lQ4

l24

� �
¼ x2�xQ

x2�x4
;

xQ�x4
x2�x4

� �
for x2 6¼ x4 and

l2Q

l24
;

lQ4

l24

� �
¼ y2�yQ

y2�y4
;

yQ�y4
y2�y4

� �
for y2 6¼ y4,

further manipulations can show that

wP � wQ ¼ Dw ð11Þ
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which provides a physical interpretation of Dw

defined in (6). For thin beam/plate under small

displacement, it is well-known that the out-of-plane

displacement will dominate in general. A simple

illustration is given in Fig. 3. Unless the tip force is

applied axially to the cantilever (a = 0), otherwise the

out-of-plane displacement would be far larger than the

in-plane displacement for thin beams. Thus, u would

be dominated by w and a good approximation to (11)

after taking the magnitude is

Dwj j ¼ wP � wQ

		 		 ¼ uP � uQ

		 		: ð12Þ

Applying the same method of interpolation of u in

the corotated configuration, see (10), to U in the initial

configuration, one obtains

UP � UQ ¼ l1PU3 þ lP3U1

l13
� l2QU4 þ lQ4U2

l24

¼ ½M1I3;M2I3;M3I3;M4I3�
U1

..

.

U4

8><
>:

9>=
>; ð13Þ

By invoking (1),

UP � UQ ¼ ðUc
P þ ½ex; ey; ez�TuPÞ � ðUc

Q

þ ½ex; ey; ez�TuQÞ
¼ ½ex; ey; ez�TðuP � uQÞ ð14Þ

in which Uc
P and Uc

Q cancel each other because Pc

and Qc are overlapping. By incorporating (12), (13),

(13) and the property of the orthogonal matrix

½ec
x; e

c
y; e

c
z �, (8) can be expressed as

Ub ¼ De

2
ðDwÞ2 ¼ De

2
ðuP � uQÞTðuP � uQÞ ¼

De

2
ðUP � UQÞTðUP � UQÞ

¼ 1

2

U1

U2

U3

U4

8>>><
>>>:

9>>>=
>>>;

T

De

M1M1I3 M1M2I3 M1M3I3 M1M4I3

M2M1I3 M2M2I3 M2M3I3 M2M4I3

M3M1I3 M3M2I3 M3M3I3 M3M4I3

M4M1I3 M4M2I3 M4M3I3 M4M4I3

2
6664

3
7775

0
BBB@

1
CCCA

U1

U2

U3

U4

8>>><
>>>:

9>>>=
>>>;

ð15Þ

where the matrix inside the braces is the tangential

stiffness matrix of the Q4 bending element. Unlike

most tangential stiffness matrix used in nonlinear

analysis, the present one is a constant matrix which

does not need to be updated in the iterative solution

procedure and is in line with that for quantifying the

bending energy in fabrics in (Sze and Liu 2009; Zhou

and Sze 2012). Unlike the conventional corotational

formulation, the choice of the corotational configura-

tion is purely notional here as the above energy is

independent of Uc.

3 Crease modelling

Inter-facet edges are creases which are often modelled

as spring-loaded hinges. Previous determinations of

the dihedral angle involve using simultaneous dot and

cross products of selected vectors (Liu and Paulino

2017; Schenk and Guest 2011; Bekker 1996). Alter-

natively, the arctan2 function is used at the expense of

using two arguments in the function (Gillman et al.

2018). Based on the large-displacement but small-

strain and small-curvature assumption, an approxi-

mate method is here devised that can considerably

simplify the fold angle, a complement of dihedral

angle, and its derivatives with respect to the nodal

displacement.

Left-hand side of Fig. 4 shows the initial crease 1–3

between the flat facets 1–2-3 and 1–3–4–E. Among

Fig. 3 A cantilever with an

inclined tip force acting and

the ratio of its out-of-plane

to in-plane deflection at the

tip. For thin bean L2[ [ I/
A

Fig. 4 The crease 1–3 between the facets 1–2–3 and 1–3–4–E

in its initial and deformed configurations. The fold angle

changes from ho to h
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nodes 4 and E, the one closer to the mid-point of 1–3,

i.e. node 4, is used to determine the initial fold angle ho

which is normally zero. P and Q are points along 1–3

such that P-4 and Q-2 are perpendicular to 1–3. Thus,

the position vectors XP and XQ can be expressed as:

XP ¼ X1 þ sPðX3 � X1Þ: XQ ¼ X1 þ sQðX3 � X1Þ
ð16Þ

where the non-dimensional coordinates sp and sQ can

be solved from the orthogonality relations ðX3 � X1Þ �
ðX4 � XPÞ ¼ 0 and ðX3 � X1Þ � ðX2 � XQÞ ¼ 0 to be

sP ¼ ðX3 � X1Þ � ðX4 � X1Þ
jX3 � X1j2

;

sQ ¼ ðX3 � X1Þ � ðX2 � X1Þ
jX3 � X1j2

:
ð17Þ

Thus,

P4 ¼ X4 � XP ¼ X4 � ð1� sPÞX1 � sPX3;
Q2 ¼ X2 � XQ ¼ X2 � ð1� sQÞX1 � sQX3:

ð18Þ

In the equation, IJ denotes the vector from I to J

where I, J = 1, 2, 3, 4, P and Q. The initial fold angle

ho can be obtained as

cos ho ¼ �
P4 � Q2

P4j j � Q2
		 		 and

ho ¼
cos�1 �

P4 � Q2

P4j j � Q2
		 		

 !
for (P4� Q2Þ � ðX3 � X1Þ[ 0

� cos�1 �
P4 � Q2

P4j j � Q2
		 		

 !
otherwise

8>>>>><
>>>>>:

ð19Þ

in which cos-1 returns the principal value of the

angle between 0 and p. It is trivial that the fold angle

and dihedral angle are complementary, i.e. their sum is

p. A similar way of computing the dihedral angle can

be noted in (Bekker 1996).

After displacement U, J moves to J0 whose position
vector is XJ’ = XJ ? UJ. Following (18), the dis-

placed P4 and Q2 become

p ¼ P040 ¼ P4þ U4 � ð1� sPÞU1 � sPU3;
q ¼ Q020 ¼ Q2þ U2 � ð1� sQÞU1 � sQU3:

ð20Þ

The deformation due to crease folding often

dominates the overall deformation to which the facet

membrane and bending deformations also contribute.

Under the large-displacement but small-strain and

small-curvature assumption for the facet, close

approximations to the fold angle h and the unit vector

n along p 9 q can be taken to be

cos h ¼ � p � q
pq

and

h ¼
cos�1 � p � q

pq

� �
for (p� qÞ � 1030 [ 0

� cos�1 � p � q
pq

� �
otherwise

8>><
>>:

ð21a; bÞ

and

n ¼ X30 � X10

jX30 � X10 j
¼ X3 þ U3 � X1 � U1

jX3 þ U3 � X1 � U1j
; ð22Þ

where p =|p| and q =|q|. By invoking the relations in

(20), derivative in (21a) with respect to UC is

oh
oU4

¼ 1

sin h
q

pq
� p � q

p2q

op

oU4

� �

¼ �ðp � qÞp� ðp � pÞq
p3q sin h

: ð23Þ

By substituting a = b = p and c = q substituted

into the identity a 9 (b 9 c) = (a�c)b - (a�b)c, one
gets p 9 (p 9 q) = (p�q)p - (p�p)q and

oh
oU4

¼ � p� ðp� qÞ
p3q sin h

¼ � p

p2
� p� q

pq sin h

� �

¼ � p� n

p2
: ð24Þ

Similarly, one can derive

oh
oU2

¼ � n� q

q2
: ð25Þ

By invoking (20), it can be shown that

oh
oU1

¼ �ð1� sPÞ
oh
oU4

� ð1� sQÞ
oh
oU2

;

oh
oU3

¼ �sP
oh
oU4

� sQ
oh
oU2

:
ð26Þ

From (22), (24), (25) and (26), all the first order

derivatives of hwith respect to the nodal displacement

are determined.

Before proceeding to the second order derivatives

of h, the following identities for any arbitrary vectors

a = {ai} and b = {bi} are recalled:
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a� b ¼ ½a��b;
a� ða� bÞ � ða� bÞ � a
¼ ða � aÞ½b�� � ða � bÞ½a��;

ð27a; bÞ

where

½c�� ¼
0 �c3 c2
c3 0 �c1
�c2 c1 0

2
4

3
5for any vector c

¼ cif g and a� b ¼ ½aibj�:

By taking a = p and b = n, and invoking the

approximation p�n = 0, (27b) becomes

p� ðp� nÞ � ðp� nÞ � p ¼ p2½n��: ð28Þ

Noting that n in (22) is independent of U2 and U4,

(28) leads to

o2h

oUT
4oU4

¼ ½n��
p2

þ 2

p4
ðp� nÞ � p

¼ 1

p4
½ðp� nÞ � pþ p� ðp� nÞ� ð29Þ

By invoking q�n = 0, one can similarly obtain

o2h
oU2oU2

¼ � ½n��
q2

� 2

q4
ðq� nÞ � q

¼ � 1

q4
½ðq� nÞ � qþ q� ðq� nÞ� ð30Þ

By recalling (20), other second-order derivatives of

h with respect to the nodal displacement can be

expressed as

o2h

oUT
4oU2

¼ 0;
o2h

oUT
4oU1

¼ �ð1� sPÞ
o2h

oUT
4oU4

;
o2h

oUT
4oU3

¼ �sP
o2h

oUT
4oU4

;

o2h

oUT
2oU1

¼ �ð1� sQÞ
o2h

oUT
2oU2

;
o2h

oUT
2oU3

¼ �sQ
o2h

oUT
2oU2

;

o2h

oUT
1oU1

¼ ð1� sPÞ2
o2h

oUT
4oU4

þ ð1� sQÞ2
o2h

oUT
2oU2

;

o2h

oUT
1oU3

¼ sPð1� sPÞ
o2h

oUT
4oU4

þ sQð1� sQÞ
o2h

oUT
2oU2

;

o2h

oUT
3oU3

¼ s2P
o2h

oUT
4oU4

þ s2Q
o2h

oUT
2oU2

:

ð31Þ

The elastic energy of the crease can be assumed to

be

Uc ¼
kl

2
ðh� hoÞ2 ð32Þ

where k is the fold stiffness per unit length of the

crease and l =|X3—X1| is the initial length of the

crease. The internal force and tangent stiffness matrix

are

fc ¼

f1
f2
f3
f4

8>><
>>:

9>>=
>>;

and kc ¼

k11 k12 k13 k14
k22 k23 k24

k33 k34
sym: k44

2
664

3
775

ð33Þ

in which

f i ¼
oUc

oUi
¼ klðh� hoÞ

oh
oUi

and

kij ¼
o2U

oUT
i oUj

¼ kl
oh
oUi

� oh
oUj

þ klðh� hoÞ
o2h

oUT
i oUj

ð34Þ

in which derivatives of h has been derived in (24) to

(26) and (29) to (31). As the crease involves nodes 1, 2,

3 and 4, it would be termed and implemented as a

4-node crease element. It is trivial that the crease

element is equally applicable to model elastic hinges.

4 Prescribing fold angles

In origami simulation, it is sometimes more conve-

nient to prescribe the fold angle h to its rest angle hrest

which defines the zero energy configuration of the

crease (Ghassaei et al. 2018). Furthermore, it is often

necessary to apply the prescribed hrest incrementally to

minimize divergence in the nonlinear solution proce-

dure. To effect h = hrest incrementally, the elastic

energy of the crease can be modified to

Uc ¼
kl

2
ðh� hÞ2 ð35Þ

where h ¼ ð1� tÞho þ threst and t varies from 0 (start

of the analysis step) to 1 (end of the analysis step). The

related element internal force vector and tangential

stiffness matrix can be obtained by replacing ho with h
in (34). In reality, multiple creases would be pre-

scribed with their rest angles and hs may only be

approximately equal to h s in the converged solution.

For simplicity, prescription of the rest angle as the
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means to deform an origami would be termed as the

rest angle loading.

5 Numerical examples

The Q4 bending element and the 4-node crease

element are incorporated into ABAQUS thru its

user-defined element or UEL subroutines. They are

co-used with ABAQUS’s 3D membrane elements

M3D4 and M3D3 to realize the origami simulations.

Modification of the subroutine is needed for specifying

the rest-angle loading. In the automatic time increment

feature of ABAQUS, the prescribed loading is applied

incrementally as a function of time t which varies from

0 (start of the analysis step) to 1 (end of the analysis

step). For each increment, the Newton–Raphson

method is used to refine the iterative solution until

the default convergence criteria, i.e. the 0.5% force

tolerance and the 1% displacement tolerance, are met

simultaneously. Unless specified otherwise, the

default automatic time increment is employed with

the initial and minimum time increment set to be 1 and

10–5, respectively. In the automatic time increment

process, if the solution cannot converge within 16

iterations, the scheme abandons the increment and

starts again with the time increment reduced to one-

quarter of the present value. If the solution still fails to

converge, the scheme reduces the increment again. If

the time increment becomes smaller than the mini-

mum or the solution fails after 5 reductions, the

analysis will be aborted. On the other hand, the time

increment increases by 50% if the last two converged

solutions are both attained within 5 iterations. The

computation is conducted in the same laptop PC, with

Intel(R) Core(TM) i9-9880H CPU (8 cores,

2.30 GHz) and 64 GB RAM, used to produce the

results in Fig. 1 and Table 1.

In the description of the examples and the

ABAQUS calculations, SI units are employed and

would not be further specified. The properties of

paperboard E = 3 9 109, m = 0.3 and

h = 0.27 9 10–3 are adopted (Filipov et al. 2017;

Schulgasser 1983). The fold stiffness per unit crease

length is taken to be proportional to the bending

rigidity, i.e., k = D/L* where L* is a length scaling

factor (Lechenault et al. 2014). For paperboards, L*

varies typically from 1.6 9 10–3 to 133 9 10–3 m, see

Table 1 of reference (Filipov et al. 2017). In Sects. 5.1,

5.2, 5.3 and 5.6, k = 0.1 is used which corresponds to

L* = 54 9 10–3. The video animation files for the

examples are provided as Online Resources. They are

prepared by the post-processor of ABAQUS with at

Fig. 5 Two panels connected by an elastic hinge. a The initial, b an intermediate and c the final configurations predicted by the 8-node
solid-shell element model SC8R. The crease element A1A2A3A4 is defined using nodes on the faces of the two panels
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least 60 time increments to enhance the visual

smoothness.

5.1 Elastic hinge

This example considers two identical panels con-

nected by an elastic hinge and aims at illustrating the

efficacy of the proposed crease element. It also serves

to compare the convergence of different elements used

to model the panels. The dimensions of the panels are:

L = 2, W = 1 and H = 0.05. Practically, no strain will

be induced in the panels. The nonlinearity of the

problem mainly comes from the large displacement

and rotation experienced by the elements. Here, four

modelling methods are considered.

In the first method of modelling, the panels are

modelled by ABAQUS’s SC8R solid-shell element

model which possesses no rotation dof. Eight elements

are employed as shown in Fig. 5. B1 to B5 are pinned.

C1 and C2 are restrained from moving along the X-

direction. An elastic hinge is realized by having four

nodes along A1A3 common to the two panels. The

crease element A1A2A3A4 with initial fold angle

ho = p, see Fig. 5a, provides the elastic effect to the

hinge. A rest angle loading with hrest = 0 is applied to

unfold the panels. An intermediate configuration at h
& 2p/3 and the final configuration at h = 0 are shown

in Fig. 5b, c, respectively. The animation video is

given in Online Resource 1.

In the second method of modelling, A2 and A4 that

define the crease element are then changed to nodes on

the side edges of the panels, See Fig. 6. In other words,

the crease element is initially flat (ho = 0) and fully

folded in the final configuration (hrest = p). The

animation video is given in Online Resource 2.

In the third method of modelling, the S4R shell

element model in ABAQUS is employed, see Fig. 7.

The element possesses 4-node on the mid-surface of

the plate/shell and each node has 3 translational and 3

rotational dofs. The boundary conditions prescribed to

Bis and Cis are the same as those in SC8R. To avoid

coupling the rotational dofs of the elements modelling

Fig. 6 Two panels connected by an elastic hinge. a The initial, b an intermediate and c the final configurations predicted by the 8-node
solid-shell element model SC8R. The crease element A1A2A3A4 is defined using nodes on the side edges of the two panels

123

Simulating flexible origami structures by finite element method



the two panels, the two panels are created separately.

The translational dofs of Eis and Fis are then tied by

using the Multi-Point Constraint of PIN type in

ABAQUS so that Eis and Fis share the same transla-

tional dofs. The crease element E2A2E4A4 with initial

fold angle ho = p–0.1 is defined to provide the elastic

effect to the hinge between the two panels. It should be

remarked that the more natural setting ho = p is not

used because it would cause all Bis and Cis lying on the

same vertical line. The two fully folded panels can

spin freely about the vertical line leading to the

singular of the initial global stiffness matrix. Again,

rest angle loading with hrest = 0 is employed to unfold

the panels. After the first few time increments, the time

increments of ABAQUS remain to be * 0.0014

throughout the simulation, see Table 2. An interme-

diate configuration h & 2p/3 and the final configura-

tion are shown in Fig. 7b, c, respectively. The

animation video is given in Online Resource 3.

In the fourth method of modelling, the M3D4 3D

membrane element model in ABAQUS, the Q4

bending element and crease elements are employed.

The initial mesh is same as the one shown in Fig. 7a

whilst the two panels share the same nodes at the

elastic hinge. In other words, nodes Eis and Fis in

Fig. 7b are identical and they need not be separately

defined. Again, E2A2E4A4 is the crease element

providing the elastic hinge effect. For 20 common

element edges shared by adjacent elements within

each panel, crease elements with a large stiffness

(k = 1000) are defined to maintain the coplanarity of

the panels. The predicted configurations are identical

to those of the S4R shell element model in Fig. 7. The

animation video is given in Online Resource 4.

The numbers of time increment and the CPU time

consumed by the four methods of modelling are

summarized in Table 2. The result echoes that the

discussion in Sect. 1 on the relative convergence of the

elements with and without rotational dofs. S4R shell

element model consumes far more computing

resource than the SC8R solid-shell element model

which, in turn, is less computationally efficient than

using the membrane element and the developed

elements.

5.2 Simple pop-up Kirigami

This example considers the simple pop-up kirigami

shown in Fig. 8. The kirigami is made from a square

paper with two straight cuts B2B4 and C2C4. Initially,

Fig. 7 Two panels connected by an elastic hinge. a The initial, b an intermediate and c the final configurations predicted by the 4-node
shell element model S4R
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the paper is flat, i.e., ho = 0 for all creases. Nodes B0

and B3 are at the two sides of B2B4 whilst nodes C0 and

C3 are at the two sides of C2C4. Nodes B1, B2, C1 and

C2 are fixed. Both the displacement and rest angle

loading are prescribed to pop up the kirigami. Same as

the last example, strain inside the facets is negligible

and the nonlinearity comes from the large displace-

ment and rotation experienced by the elements. It can

also be considered by solid-shell element readily at the

expense of high computational cost.

For the displacement loading, the applied displace-

ments are listed in Table 3. ABAQUS takes 18

increments and 1.4 s of CPU time to complete the

computation. The final configuration is shown in

Fig. 8b. The animation video is given in Online

Resource 5. For the rest angle loading, the following

rest fold angles are prescribed:

hrest ¼
�p=2 for crease B0C0

p=2 for creases B2C2, B4C4, A3B3 and C3D3

0 for other creases

8<
: :

ð36Þ

ABAQUS takes 8 increments and 0.8 s of CPU

time to complete the computation. The final folded

form is graphically indistinguishable from Fig. 8b.

The animation video is given in Online Resource 6.

5.3 Crane

As the crane is a symbol of happiness and eternal

youth in most Asian countries, it is probably the most

Table 2 Numbers of time increments and CPU times consumed in the elastic hinge problem

Method of modelling First

way

Second

way

Third

way

Fourth way

Elements used to model the two

panels

SC8R SC8R S4R M3D4, the developed Q4 bending and crease

elements

No. of time increments 31 44 674 22

CPU time 1.9 s 2.5 s 41.6 s 1.7 s

Fig. 8 a The initial configuration of a simple pop-up kirigami. B0 and B3 are at the two sides of the cut B2B4, C0 and C3 are at the two

sides of the cut C2C4. b The final configuration
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popular origami. Crane folding is considered in this

example (Ghassaei et al. 2018). Figure 9a shows the

crease pattern which consists of triangular and

quadrilateral facets. The zero displacement boundary

conditions (1) U = 0 for A1, (2) V = 0 for A1 and A2,

(3) W = 0 for A2, A3 and A4 are prescribed to prevent

the rigid body movement of the origami. Same as the

last example, both displacement and rest angle load-

ings are employed to deform the flat piece of paper in

Fig. 9a, i.e. ho = 0, into the final folded form in

Fig. 9b.

In the displacement loading, several nodes are

prescribed with vertical displacements estimated from

the final folded form in Fig. 9b listed in Table 4. The

predicted final configuration is shown in Fig. 10a, b in

different views. ABAQUS takes 11 increments and

0.7 s of CPU time to complete the computation.

Figure 10b shows that the largest value of the

maximum principal membrane strain is around

1.41%, justifying the small strain assumption. The

animation video is given in Online Resource 7.

In the rest angle loading case, the final rest angles

for mountain and valley creases in Fig. 9a are set to be

hrest ¼
p=2 for valley creases

�p=2 formountain creases

�

ABAQUS takes 13 increments and 1.2 s of CPU

time to complete the computation. The final config-

uration is shown in Fig. 10c, d which resembles that of

the displacement loading in Fig. 10a, d. Themaximum

principal membrane strain is plotted in Fig. 10d and

the largest value is 1.37%. The animation video is

given in Online Resource 8. Since whether a crease is a

valley or mountain type can be told readily, it is more

straightforward to prescribe rest angles than the nodal

displacements at the expense of higher computational

cost.

To reduce the computational cost, it is straight

forward to use symmetric condition in the displace-

ment loading but slave image nodes would be needed

in the rest angle loading. However, origami simulation

often aims at seeing the whole origami. Hence, we

choose to model the whole origami.

Table 3 Displacement loading conditions for the pop-up kirigami, see Fig. 8

Nodes A3, B3, C3, D3 B0, C0 A5, B5, C5, D5

Prescribed W 0 0.06 0.1

Fig. 9 Crane. a The crease pattern where the valley folds (hrest[ 0) and mountain folds (hrest\ 0) are indicated by chained and solid

lines, respectively. b A paper model of the folded form
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5.4 Compressing the Miura-ori and the derived

Kirigami

This example considers the folding of a Miura-ori and

its derived kirigami under displacement compression

(Liu and Paulino 2017). Figure 11a shows the flat

Miura unit cell which is made up of four identical

parallelograms with a = b = 0.02 and a = 60�.

The Miura-ori consists of 5 9 5-unit cells. In the

flat configuration, b = 120�, L = Lflat = 0.1H3 &
0.173 and W = Wflat = 0.2. To avoid the buckling

instability under the compressive loading, the initial

configuration in Fig. 11b is taken to be nearly flat

(b = 118.27�) but not perfectly flat. On the supporting
conditions, node O is fixed; the nodes at X = 0 are on

the same vertical plane and their X-displacements are

fixed. The nodes at the other end of X (& 0.172) are on

Table 4 Displacement loading conditions for the crane

Nodes A5, A6 A10 A1 A9 A7, A8

Prescribed W 10.5 9 10-3 22.0 9 10-3 22.5 9 10-3 26.3 9 10-3 40.5 9 10-3

Fig. 10 Crane under displacement loading (a) and (b): a isometric view of the final configuration and the Z-displacement plot, b top

view of the final configuration and the maximum principal membrane strain plot. c and d are the predictions under rest angle loading
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another vertical plane and their X-displacements are

prescribed to be - 0.16 under the compressive

loading. For nodes on the X–Y-plane at the two ends,

their Z-displacements are fixed.

The kirigami in Fig. 11c is obtained by cutting

away 32 facets from the Miura-ori. Here, the paper-

board is still adopted as the facet material. For the

structures to behave like a mechanism with rigid

panels connected by hinges, the ratio k/D should be

small (Liu and Paulino 2017). To benchmark the

predictions with the analytical solution based on the

rigid facet assumption, the fold stiffness is reduced to

k = 10–4. With the setting, the kirigami experiences

convergence problem. In this light, its initial time

increment is set to be 0.01 whilst that of the Miura-ori

remains to be 1.

The width and height against the folding ratio are

plotted in Fig. 12a for Miura-ori. The predictions

agree well with the analytical solutions based on the

rigid facet assumption (Wei et al. 2013). The dimen-

sional changes of the kirigami are similar to those of

the complete tessellation. The two partially folded

configurations at L/Lflat = 0.87 and 0.55 are shown in

Fig. 12b, c. Figure 13a, b show the histories of the

crease energy and the reaction force (X-component) at

the compressed end, respectively. They are essentially

identical to the analytical solutions. Since the stiffness

of the crease is much smaller than that of the facet, the

deformation is confined to crease folding whilst the

membrane and bending energies are negligible. Based

on the rigid facet assumption, it is known that h3 = -h1
(minor folds) and h4 = h2 (major folds), see Fig. 11a

for the labels, during the folding process (Lang and

Fig. 11 a The flat Miura-ori unit cell: a = b = 0.02, a = 60�; his are fold angles at the creases. b The Miura-ori with 5 9 5 unit cells

and b = 118.27�. c The kirigami obtained by cutting away 32 facets from the Miura-ori
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Howell 2018). The Miura-ori has 90 minor and major

folds whilst this number decreases to 26 for the

kirigami. Thus, Uc for the Miura-ori: Uc for the

kirigami = 90: 26. The numerical predictions are in

good agreement with this ratio, see Fig. 13a. The same

ratio also holds for the magnitude of the reaction force

Fig. 12 a The width W and height H of theMiura-ori against the

folding ratio (L/Lflat). ‘‘s’’ and ‘‘*’’are the numerical predictions

whilst the solid lines are the analytical solutions. b and c are

partially folded configurations of the Kirigami at L/Lflat = 0.87

and 0.55, respectively

Fig. 13 a The crease energy and b the reaction force (X-component) at the compressed end for the Miura-ori and the Kirigami
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which is shown in Fig. 13b. The animation videoes for

Miura-ori and the derived kirigami are given in Online

Resources 9 and 10, respectively.

5.5 Pinching the Miura-ori and the derived

Kirigami

This example considers the Miura-ori and its derived

kirigami pinched at nodes A and B, see Fig. 14a, b.

Node B is fixed whilst node A is prescribed with

U = W = 0 andV = - 0.03. Node C is restrained from

moving along the X-direction to avoid the rigid body

rotation about the Y-axis. The crease stiffness per unit

length is k = 1 and b equals 90� in the initial

configuration. The other settings are the same as the

previous example except that the initial time step for

the kirigami resumes to 1. Figure 15a shows the final

configuration for the Miura-ori which resembles a

saddle and is in agreement with the experiment

(Schenk and Guest 2011). To quantify the curved

surface, a polynomial surface of degree 2 in both X and

Y is constructed by least-square fit using the marked

nodes in Fig. 14a, b. The curvatures jx and jy at node

C are evaluated (Liu and Paulino 2017). The histories

of the curvatures and reaction force (Y-component) are

plotted against the displacement-VA in Fig. 15b. The

results for the kirigami are shown in Fig. 15c, d. For

both structures, jx and jy vary almost linearly with the

displacement. Due to the removed facets, the reaction

force of the kirigami is much lower than that of the

Miura-ori. Moreover, the final configuration of

kirigami is shallower than that of the Miura-ori, see

Fig. 15a, c. This is also reflected by the magnitudes of

the curvature in Fig. 15b, d. The animation videos for

Miura-ori in the two different views are given in

Online Resources 11 and 12 whilst those for the

derived kirigami are given in Online Resources 13 and

14.

5.6 Kresling tube under compression

The Kresling pattern is a well-known origami pattern

for deployable cylindrical tubes (Kresling 2008; Guest

and Pellegrino 1994). The tube considered here

consists of three layers along Z-axis and each layer

is made up of 16 identical triangular facets as shown in

Fig. 16a. There is no quadrilateral facet. The initial

configuration is folded. It is specified by the height of

the layer H = 0.05 and the radius of circumscribed

circle R = H, see Fig. 16b. The Z-displacement W of

the bottommost nodes A1 to A8 at Z = 0 are set to zero.

To avoid rigid bodymovements, U at A3 and A7 are set

to zero whilst V at A1 is set to zero. The topmost nodes

at Z = 3H are prescribed with W = - 3H for com-

pressing the tube. Figure 17a–c plot the vertical

reaction force, energies and maximum principle stress

against the normalized vertical displacement of the

topmost nodes, respectively. Since this problem

converges very rapidly, the initial and maximum time

increments are respectively set to be 0.01 and 0.02 to

enable a fine tracing of the load history. The reaction

force first decreases from 0 to the minimum- 1300 at

W/H &- 0.27. The force then increases and becomes

positive at W/H & - 1 and thereafter. The reaction

Fig. 14 The initial configurations of a the Miura-ori and b the kirigami in which b = 90�
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force equals to zero at W/H = 0, & - 1 and = - 3.

For 0[W/H[- 1, a download force is required to

compress the tube. For - 1[W/H[-3, the tube

would continue to retract by itself. From the reaction

force and the total energy plots, the equilibriums are

stable at W/H = 0 and - 3 whilst the equilibrium is

unstable at W/H & - 1. Hence, the tube is bi-

stable (Cai et al. 2015; Liu and Paulino 2017). The

animation video is given in Online Resource 15.

5.7 Small strain small curvature assumption

The small strain small curvature assumption is

adopted in the derivation of the Q4 bending and the

4-node crease elements. To justify the assumption, the

maximum first principal membrane strain e1 and the

maximumDw/Hj0 among all the elements at the end of

last all successfully completed time increments are

traced and listed in Table 5. It can be seen that the

maximum e1 is only 3.34% which is acceptable for

small strain assumption. The small curvature assump-

tion is more complicated. One should look at the ratio

of the element size and the radius of curvature but not

the curvature alone. In Appendix 1, the square element

geometry is assumed for simplicity and the maximum

Dw/Hj0 = 0.424 is employed to compare the curva-

tures computed by the small curvature assumption in

(5) and obtained by fitting the deformed surface with

Fig. 15 The Miura-ori under pinching: a the isometric and side

views of final configuration with the contour showing the Z-
displacement, b the history of the reaction force (Y-component)

at node A and the curvatures jx and jy. c, d are the predictions

for the kirigami
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circular arcs. The curvatures obtained by the two

approaches differ only by 0.33%. Though the analysis

involves approximations, the difference in the two

curvatures is sufficiently small for adopting the small

curvature assumption.

6 Closure

AQ4 bending element and a 4-node crease element are

developed in this paper for origami simulation. To

account for the bending energy in the Q4 bending

element, a corotational consideration is taken. Based

on large displacement/rotation but small strain/curva-

ture behaviour of the facet, the energy turns out to be a

quadratic function of the nodal displacement. Thus,

the relevant tangential stiffness matrix is constant and

requires no update in the iterative solution process. On

the other hand, the fold angle in the crease element is

quantified by using the dot product of two vectors

connecting the crease and the nodes defining the two

adjacent facets. The complexity in the derivatives of

the fold angle with respect to the nodal displacement is

considerably reduced by invoking the small strain/

curvature behaviour of the facet. The crease element is

equally applicable to elastic hinge modelling. The

proposed elements are implemented in ABAQUS thru

two user-defined element subroutines, see Appendix 2,

and co-used with of 3D membrane elements in

ABAQUS. Indeed, it is straight forward to program

a comprehensive Q4 element which takes both the

membrane and bending deformations into account.

Since ABAQUS does not show user-defined elements

in its post-processor, the 3D membrane elements of

ABAQUS are purposely employed such that the

predicted geometry can be displayed by the software.

Validation examples including elastic hinge, origami

and kirigami are presented whilst the pertinent videos

are provided in the Online Resources 1 to 15. The

ABAQUS input (.INP) files and FORTRAN source

(.FOR) files required to run the example on the crane

in Sect. 5.3 are provided in Online Resources 16 and

17 for the displacement loading and 18 and 19 for the

rest-angle loading. Interested readers may contact the

authors for files on other examples. Though not

explored in this paper, instability of the origami can

also be studied using the built-in Riks solution method

in ABAQUS.

Fig. 16 a The initial Kresling tube. The bottommost and

topmost nodes are constrained with the Z-displacement 0 and –

3H, respectively. b The bottommost layer of the tube.

H = R = 0.05

Table 5 Maximum e1 and maximum Dw/Hj0 among all the elements

Maximum e1 (%) Maximum Dw/Hj0

Elastic Hinge (see Sect. 5.1) 0.000 0.000

Pop-up Kirigami using rest angle loading (see Sect. 5.2) 0.000 0.000

Pop-up Kirigami using displacement loading (see Sect. 5.2) 0.046 0.030

Crane using rest angle loading (see Sect. 5.3) 0.058 0.081

Crane using displacement loading (see Sect. 5.3) 1.02 0.132

Compressing Miura-ori (see Sect. 5.4) 0.000 0.001

Compressing the derived Kirigami (see Sect. 5.4) 0.001 0.003

Pinching Miura-ori (see Sect. 5.5) 1.71 0.424

Pinching the derived Kirigami (see Sect. 5.5) 0.22 0.173

Kresling tube under compression (see Sect. 5.6) 3.34 n.a.a

aQ4 elements are not employed
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Appendix 1: Curvature

To assess the accuracy of the equations on the

curvature components in terms of Dw in (7), the

square element shown in Fig. 18a is considered. For

the element, the geometric parameters defined under

(2) and (3) are

a0 ¼ b0 ¼ a2 ¼ b2 ¼ 0;

a1 ¼ �b1 ¼ a3 ¼ b3 ¼ L=2; j0 ¼ L2=2;
j1 ¼ j2 ¼ 0:

ð37Þ

With the local displacement from the co-rotational

to the final deformed configuration taken to be

w1 = w3 = -d and w2 = w4 = d, (5) and (6) becomes

Dw ¼ �2d;
o2w

o2xc
¼ � 2d

L2
;

o2w

o2yc
¼ 2d

L2
;

o2w

oxcoyc
¼ 0

ð38Þ

For the curvature along 1c and 3c, the local

transverse plane through 1c and 3c in Fig. 18 is

considered. The final deformed location of the two

(a)

(c)

(b)

membrane

crease

Um =16.7
Uc = 0.66

total

Fig. 17 Results for the Kresling tube plotted against the deflection: a the vertical reaction force; b the crease and total energies; c the
maximum principal membrane strain
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nodes are 10 and 30. The element centre in the

corotational configuration is Oc and its local displace-

ment is zero. To obtain the exact curvature, the arc

through 10, 0c and 30 is constructed whilst the arc

length can be approximated as 2L under the small

strain assumption. With the angle subtended by the arc

be 2h, the geometry gives

Rh ¼ L; cos h ¼ R � d
R

ð39Þ

from which

d
L
¼ R

L
1� cos

L

R

� �
ð40Þ

It can be taken as the reference solution. On the

other hand, the second expression in (38) is an

approximation to - 1/R based on the small curvature

assumption. It can be rewritten as

d
L
¼ 1

2

L

R
ð41Þ

The last two relations between d/L and the normal-

ized curvature are plotted in Fig. 19.

Among the numerical predictions in Sect. 5.7, the

highest value of |Dw|/Hjo is 0.424. When the above

square element geometry is assumed as an approxi-

mation, the value leads to d/L = 0.150 for which the

relations in (40 and (41) give L/R = 0.302 and 0.300,

respectively. The difference is 0.33%. Even if one add

another 50% to d/Lwhich becomes 0.225, the relations

in (40) and (41) give L/R = 0.457 and 0.450, respec-

tively. The difference is 1.5% which is still small. The

identical differences can be obtained for the curvature

along the yc-direction.

Appendix 2: Abaqus UEL subroutine

Fig. 18 a A square element and its corotated local coordinates (x, y). b The corotated configuration 1c–Oc–3c and the final deformed

configuration 10–Oc–30 of the element on the xc–zc plane

Fig. 19 The relations between d/L and the normalized

curvature L/R red lines gives the relation in (40), dashed lines
gives the relation in (41)
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subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,
1 props,nprops,coords,mcrd,nnode,u,du,v,a,jtype,time,dtime,
2 kstep,kinc,jelem,params,ndload,jdltyp,adlmag,predef,
3 npredf,lflags,mlvarx,ddlmag,mdload,pnewdt,jprops,njprop,
4 period)  

include 'aba_param.inc'
dimension rhs(mlvarx,*),amatrx(ndofel,ndofel),

1 svars(*),energy(7),props(*),coords(mcrd,nnode),
2 u(ndofel),du(mlvarx,*),v(ndofel),a(ndofel),time(2),
3 params(*),jdltyp(mdload,*),adlmag(mdload,*),
4 ddlmag(mdload,*),predef(2,npredf,nnode),lflags(4),
5 jprops(*)

! (jtype = 1002) Q4 bending element
! (jtype = 1004) 4-node crease element
if (jtype==1002) then

call quad_bending(time,kstep,kinc,jelem,MLVARX,NDOFEL,coords,
& U,props,energy,svars,RHS,AMATRX)

elseif (jtype==1004) then
call crease_hinge(time,kstep,kinc,jelem,jtype,

& MLVARX,NDOFEL,coords,U,props,energy,svars,RHS,AMATRX)
endif
return

end subroutine

! 1002 for Q4 bending element
subroutine quad_bending(time,kstep,kinc,jelem,MLVARX,NDOFEL,coords,
& U,props,energy,svars,RHS,AMATRX)

include 'aba_param.inc'
real*8 svars(*),RHS(MLVARX,*)
real*8 coords(3,4),U(NDOFEL),props(*),energy(7),AMATRX(NDOFEL,NDOFEL)
real*8 Eb(3,3),Vab(3),Vac(3),Vn1(3),Vad(3)
real*8 dl(3),bl(3),VI(3),LV(4),LF(4),Vpq(3)
real*8 Va(3)
real*8 a1,b1,a3,b3,j0,al(2),cl(2)
real*8 xi,lac,lbd,lpq,c0,x0,kL,k1,k0,Db,kac,eac  
integer i,j,ki,kj
real*8 norm

! Find the point of intersection,  VI
Vab=coords(:,2)-coords(:,1)
Vac=coords(:,3)-coords(:,1)
Vad=coords(:,4)-coords(:,1)
call cross_product(Vab,Vac,Vn1)
Eb(:,3)=Vn1/norm(Vn1,3)
Eb(:,1)=Vac/norm(Vac,3)
call cross_product(Eb(:,3),Eb(:,1),Eb(:,2)) 

bl=matmul(Vab,Eb)  ! vertex b in the local coordinate
dl=matmul(Vad,Eb)  ! vertex d in the local coordinate  
xi=-bl(2)/( dl(2)-bl(2) )*( dl(1)-bl(1) )+bl(1)
VI=coords(:,1)+xi*Eb(:,1)
do i=1,4

Va=VI-coords(:,i)
LV(i)=norm(Va,3)

enddo
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lac=LV(1)+LV(3)
lbd=LV(2)+LV(4)
LF=(/ -LV(3)/lac, LV(4)/lbd, -LV(1)/lac, LV(2)/lbd /)

! 1002 for Q4 bending
al=(/0.d0,0.d0/)
cl=(/lac,0.d0/)
a1=( -al(1)+bl(1)+cl(1)-dl(1) )/4.d0
b1=( -al(2)+bl(2)+cl(2)-dl(2) )/4.d0         
a3=( -al(1)-bl(1)+cl(1)+dl(1) )/4.d0
b3=( -al(2)-bl(2)+cl(2)+dl(2) )/4.d0
j0=a1*b3-a3*b1
c0=4.d0*(b1*b3+a1*a3)**2/(j0**3) + 2.d0*(1.d0-props(2))/j0
k0=props(1)
kL=k0*c0     
Vpq=0.d0
do j=1,4

ki=(j-1)*3+1
kj=j*3
Vpq=Vpq+LF(j)*U(ki:kj)

enddo

energy(2)=kL/2.d0*dot_product(Vpq,Vpq)
lpq=dot_product(Vpq,Vpq)
lpq=sqrt(lpq)
kac=lpq/j0
eac=lpq/sqrt(j0)
svars(1:4)=LV
svars(5)=c0

! RHS and AMATRX
do j=1,4

do i=1,3
ki=(j-1)*3+i
RHS(ki,1)=-kL*Vpq(i)*LF(j)

enddo
enddo
do j=1,4

do i=1,4
ki=(i-1)*3
kj=(j-1)*3
x0=kL*LF(i)*LF(j)
AMATRX(ki+1,kj+1)=x0
AMATRX(ki+2,kj+2)=x0
AMATRX(ki+3,kj+3)=x0

enddo
enddo
return

end subroutine

! U1004 for the 4-node crease element
subroutine crease_hinge(time,kstep,kinc,jelem,jtype,
& MLVARX,NDOFEL,coords,U,props,energy,svars,RHS,AMATRX)
include 'aba_param.inc'
parameter pi=3.1415926535897932384626433832795d0
real*8 svars(*),RHS(MLVARX,*),time(*)
real*8 coords(3,4),U(NDOFEL),props(*),energy(7),AMATRX(NDOFEL,NDOFEL)
real*8 Un(3,4),ndx(3,4)
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real*8 mom,kL,he0
real*8 lab,he
real*8 dD(3),dC(3),dA(3),dB(3),Jhe(12)
real*8 dCC(3,3),dCD(3,3),dCA(3,3),dCB(3,3)
real*8 dDD(3,3),dDA(3,3),dDB(3,3)
real*8 dAA(3,3),dAB(3,3),dBB(3,3)
integer i,j,ki,kj,num(4) 
real*8 norm
real*8 tfav(13), fav(13) ! modify this

! prescribe the rest angles, he0
! call fold_angle(coords,he0) ! used for displacement loading
fav =0.d0
tfav=0.d0
num=(/6,8,4,10/)
tfav(num)= pi/2.d0              
tfav(  7)=-pi/2.d0
he0=(1.d0-time(1))*fav(jelem-1000) + time(1)*tfav(jelem-1000)

! calculate the derivative and Hessian matrix
call JHess_PQ(U,coords,lab,he,dC,dD,dA,dB,

& dCC,dCD,dCA,dCB,dDD,dDA,dDB,dAA,dAB,dBB)

! moment and energy
kL=props(1)*lab
mom=kL*(he-he0)
energy(2)=kL/2.d0*(he-he0)**2

! RHS
Jhe=(/dA,dC,dB,dD/)
RHS(:,1)=-mom*Jhe

! AMATRX, Note that dAC=Transpose(dCA)=dCA
AMATRX(1:3,1:3)=dAA
AMATRX(1:3,4:6)=dCA
AMATRX(1:3,7:9)=dAB
AMATRX(1:3,10:12)=dDA

AMATRX(4:6,1:3)=  dCA
AMATRX(4:6,4:6)=  dCC
AMATRX(4:6,7:9)=  dCB
AMATRX(4:6,10:12)=dCD

AMATRX(7:9,1:3)=dAB
AMATRX(7:9,4:6)=dCB
AMATRX(7:9,7:9)=dBB
AMATRX(7:9,10:12)=dDB

AMATRX(10:12,1:3  )=dDA
AMATRX(10:12,4:6  )=dCD
AMATRX(10:12,7:9  )=dDB
AMATRX(10:12,10:12)=dDD

AMATRX=mom*AMATRX          
do j=1,12

do i=1,12
AMATRX(i,j)=AMATRX(i,j)+kL*Jhe(i)*Jhe(j)

enddo
enddo
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return
end subroutine

! Calculate the derivative and Hessian matrix
subroutine JHess_PQ(U,coords,lab,he,dC,dD,dA,dB,
& dCC,dCD,dCA,dCB,dDD,dDA,dDB,dAA,dAB,dBB)      

include 'aba_param.inc'
parameter pi=3.1415926535897932384626433832795d0
real*8 U(12),coords(3,4),he,lab 
real*8 dD(3),dC(3),dA(3),dB(3) 
real*8 dCC(3,3),dCD(3,3),dCA(3,3),dCB(3,3)
real*8 dDD(3,3),dDA(3,3),dDB(3,3)
real*8 dAA(3,3),dAB(3,3),dBB(3,3)
real*8 vab(3),eab(3),XP(3),XQ(3),eba(3)
real*8 vpc(3),vqd(3),vtemp(3)

real*8 sp(2),sq(2),lpc,lqd,pq
real*8 ct,st,Un(3,4),ndx(3,4)
real*8 iab(3),iac(3),iad(3),ilab
real*8 cpn(3),cnq(3)    
real*8 norm

! sp and sq calculated from the inital configuration
iab=coords(:,3)-coords(:,1)
iac=coords(:,2)-coords(:,1)
iad=coords(:,4)-coords(:,1)
ilab=norm(iab,3)
sp(2)=dot_product(iac,iab)/ilab/ilab
sq(2)=dot_product(iad,iab)/ilab/ilab
sp(1)=1.d0-sp(2)
sq(1)=1.d0-sq(2)

! the current configuration
Un=reshape(U,(/3,4/))
ndx=coords+Un

! vectors
vab=ndx(:,3)-ndx(:,1)
lab=norm(vab,3)
eab=vab/lab
eba=-eab      
XP=sp(1)*ndx(:,1)+sp(2)*ndx(:,3)
XQ=sq(1)*ndx(:,1)+sq(2)*ndx(:,3)       
vpc=ndx(:,2)-XP
vqd=ndx(:,4)-XQ          
lpc=norm(vpc,3)
lqd=norm(vqd,3)
pq=lpc*lqd

! fold angle                   
ct=-dot_product(vpc,vqd)/pq
call cross_product(vpc,vqd,vtemp)
vtemp=-vtemp/pq
st=dot_product(vtemp,eab)         
he=atan2(st,ct)

! first order derivatives
call cross_product(vpc,eba,cpn)
call cross_product(eba,vqd,cnq)
dC=-cpn/lpc/lpc
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dD=-cnq/lqd/lqd          
dA=-sp(1)*dC-sq(1)*dD
dB=-sp(2)*dC-sq(2)*dD

! second order derivatives
do j=1,3

do i=1,3
dCC(i,j)=cpn(i)*vpc(j)+cpn(j)*vpc(i)
dDD(i,j)=cnq(i)*vqd(j)+cnq(j)*vqd(i)

enddo
enddo
dCC=dCC/(lpc**4)
dDD=dDD/(lqd**4)        
dCD=0.d0
dCA=-sp(1)*dCC
dCB=-sp(2)*dCC
dDA=-sq(1)*dDD
dDB=-sq(2)*dDD
dAA=sp(1)*sp(1)*dCC + sq(1)*sq(1)*dDD
dAB=sp(1)*sp(2)*dCC + sq(1)*sq(2)*dDD
dBB=sp(2)*sp(2)*dCC + sq(2)*sq(2)*dDD
return
end subroutine

! Calculate the fold angle
subroutine fold_angle(ndx,he)
include 'aba_param.inc'
parameter pi=3.1415926535897932384626433832795d0
real*8 ndx(3,4),he
real*8 vab(3),vac(3),vad(3),eab(3),eba(3)
real*8 sp(2),sq(2),xp(3),xq(3),vpc(3)
real*8 vqd(3),lab,lpc,lqd,pq,ct,st,vtemp(3)        
real*8 norm

! vectors
vab=ndx(:,3)-ndx(:,1)
vac=ndx(:,2)-ndx(:,1)
vad=ndx(:,4)-ndx(:,1)

lab=norm(vab,3)
eab=vab/lab
eba=-eab

sp(2)=dot_product(vac,eab)/lab
sq(2)=dot_product(vad,eab)/lab
sp(1)=1.d0-sp(2)
sq(1)=1.d0-sq(2)
XP=sp(1)*ndx(:,1)+sp(2)*ndx(:,3)
XQ=sq(1)*ndx(:,1)+sq(2)*ndx(:,3)      
vpc=ndx(:,2)-XP
vqd=ndx(:,4)-XQ     
lpc=norm(vpc,3)
lqd=norm(vqd,3)
pq=lpc*lqd

! fold angle, atan2
ct=-dot_product(vpc,vqd)/pq
call cross_product(vpc,vqd,vtemp)
vtemp=-vtemp/pq
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