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Abstract—This article is focused on the design of an output
tracking control scheme for a class of continuous-time periodic
piecewise time-varying systems (PPTVSs) with actuator satura-
tion and nonlinear perturbations. The energy-to-peak tracking
performance is studied based on an equivalent condition on
the definiteness property of matrix polynomials. Considering
the actuator saturation and nonlinear perturbation, matrix
polynomial-based sufficient conditions are derived through the
Lyapunov method using periodic matrix functions. From a per-
spective of subinterval segmentation aimed at PPTVSs, the
proposed conditions can achieve less conservatism for tracking
the output of a periodic time-varying reference system, while
the controller gains can be computed using convex optimization.
Moreover, a heuristic algorithm is constructed to simultane-
ously guarantee the closed-loop state convergence and the output
tracking performance. The reduction in conservatism and the
effectiveness of algorithm are demonstrated by illustrative case
studies.

Index Terms—Actuator saturation, nonlinear perturbations,
output tracking control, periodic systems, time-varying systems.

I. INTRODUCTION

PERIODIC time-varying systems are the simplest nonau-
tonomous systems but widely present in both nature

and industry. Under the assumption of a fixed fundamen-
tal period, the stability, the control and filtering issues of
periodic time-varying systems have been extensively investi-
gated in regarding to their widespread application, such as in
mechanical systems, power systems, networked systems, and
ecological systems [1]–[6]. Among the relevant studies, the
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controller synthesis and optimization for continuous-time peri-
odic systems have been regarded as more difficult than those
for discrete-time periodic systems [7]. Although the stability
and stabilization of continuous-time periodic linear systems
with exact model information may be tackled by numerical
methods like the Floquet–Lyapunov theory [7], [8], the con-
troller design under practical limitations is likely to encounter
NP-hardness due to the underlying nonconvexity in system
models.

To improve the convenience in analysis and synthesis,
periodic piecewise system (PPS) models have been found
efficient in facilitating the study on continuous-time periodic
systems, which are without closed-form solutions and inap-
plicable to lifted models. A PPS can be achieved by dividing
the known fundamental period into a number of subintervals,
and the dynamics over each subinterval are characterized by
a corresponding subsystem. The subsystems, which may be
either time-invariant or time varying, can offer more techni-
cal freedom and amenability for convex optimization tools.
In recent years, PPSs and their variants have drawn grow-
ing research interests, which have developed from the cases
using time-invariant subsystems to those using time-varying
subsystems. Based on the previous results on periodic system
approximation [9] and switched systems [10]–[13], the stabil-
ity analyses of periodic piecewise linear time-invariant (LTI)
systems in time domain and frequency domain are investi-
gated in [14] and [15], respectively. In [16], a constructive
time-delay method to averaging of linear systems with almost
periodic coefficients that are piecewise-continuous in time
is proposed for analyzing exponential stability and input-to-
state stability via direct Lyapunov functionals. Research efforts
have also been extended to solving the control and filtering
problems of PPSs constituted by LTI subsystems with or with-
out uncertainties [17]–[19], positive LTI subsystems [20] and
linear time-delay subsystems [21]–[23], as well as periodic
switched impulsive linear systems [24]. Note that in most
of the previous studies, the controller and filter gains are
supposed to be periodic piecewise constant.

Since the polynomial-based study in [25], periodic time-
varying control approaches have been considered to tackle the
stabilization of closed-loop time-varying PPSs, which moti-
vated the study on periodic piecewise time-varying systems
(PPTVSs). Compared with the PPSs using LTI subsystems,
the PPTVSs that comprise of several time-varying subsystems
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can provide more accurate approximation of periodic dynam-
ics. The analysis of stability and L2 performance for the class
of PPTVSs with known linear time-varying (LTV) subsys-
tems have been presented in [26], where a helpful property
of matrix polynomials is proposed. In [27], a polynomial-
based nonfragile control scheme is established for PPTVSs
under controller perturbations with nonidentical time-varying
coefficients. The use of matrix polynomials not only brings
convenience to analysis, but also creates new possibility to
solve more practical-oriented problems.

In our previous work, the state tracking control problem
of PPTVSs has been studied with a periodic piecewise linear
reference model [28]. However, the actuator saturation and
nonlinear perturbations widely existing in control systems can
degrade the stability and/or tracking performance [29]–[31],
especially for output tracking issues that are usually more
desirable in practice [32], [33]. Differing from the existing
studies involving actuator saturation and nonlinear perturba-
tions, in PPTVSs the coexistence of saturation and perturba-
tions is more challenging to output tracking control, since the
nonconvexity in the system, controller and perturbations can
together result in coupled time-varying variables even after a
proper model augmentation.

In this article, an energy-to-peak output tracking control
scheme, which has not been reported for PPTVSs before, is
established for a type of actuator saturated PPTVSs involving
nonlinear perturbations. Compared to the existing studies on
PPTVSs, the PPTVS model considered in this work involves
both known and unknown nonlinear dynamics. The known
dynamics over each period is represented by a series of LTV
subsystems for convenience in both modelling and algorithm
implementation, while the unknown dynamics in the sub-
systems are represented by Lipschitz nonlinear perturbations.
Meanwhile, the reference model that generates the output sig-
nal for tracking can be periodic time varying. The actuator
saturation is tackled by a bounding region condition proposed
for PPTVSs. The output tracking performance is analyzed via
the L2-L∞ synthesis of an augmented system. To lower the
conservatism in tracking performance, an important property
of matrix polynomials is complemented based on the one given
in [26] and applied to computing the periodic controller gains,
which are constructed based on selectable subinterval segmen-
tations. A heuristic iterative algorithm is therefore proposed to
simultaneously ensure the closed-loop stability and the output
tracking performance. The contributions of this work includes
the following.

1) The proposed approach integrates the subinterval
segmentation with the negative definiteness prop-
erty of matrix polynomials, leading to lower conser-
vatism in energy-to-peak output tracking performance
than that based on the existing method in previous
studies [26], [28].

2) The obtained periodic controller not only ensures the
control inputs compliant to the actuator saturation, but
also demonstrates its effectiveness in tracking the output
of a periodic time-varying reference model.

3) The computation of key matrices in controller design
is amenable to convex optimization, while the proposed

algorithm provides an alternative to get the controller
gains and the performance index simultaneously.

The article is organized as follows. Section II provides the
problem formulation and theoretical preliminaries. Section III
analyzes the closed-loop stability under energy-to-peak output
tracking performance, with the relevant criteria and a control
algorithm proposed. Section IV validates the proposed results
and gives some discussions based on illustrative simulations.
Section V concludes the article.

Notation: R
n and Z

+ stand for the n-dimensional Euclidean
space and the set of positive integers, respectively; ‖ · ‖
denotes the Euclidean norm of a vector; I and 0 represent
the identity matrix and zero matrix with appropriate dimen-
sions; P > 0 (P ≥ 0) denotes that P is a real symmetric and
positive definite (semi-definite) matrix. PT and P−1 denote
the transpose and the inverse of matrix P, respectively. For
convenience, let sym(P) = PT + P. diag(·) denotes a diago-
nal matrix constructed by the given block matrices. In block
symmetric matrices, “∗” is used as an ellipsis for the terms
introduced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following actuator saturated PPTVS with a
fundamental period Tp and nonlinear perturbations:

ẋ(t) = A(t)x(t)+ f (t, x(t))+ B(t)SAT(u(t))+ E(t)w(t)
z(t) = C(t)x(t)+ D(t)SAT(u(t)) (1)

where x(t) ∈ R
nx is the state vector and supposed to be

continuous of t for all t ≥ 0; u(t) ∈ R
nu , z(t) ∈ R

nz and
w(t) ∈ R

nw are the control input, system output and energy-
bounded external disturbance, respectively; f (t, x(t)) ∈ R

nx

represents the time-varying and state-dependent nonlinear per-
turbations; (A(t),B(t), C(t),D(t), E(t)) are Tp-periodic matrix
functions characterized by S parts over each period, that is,
for t ∈ [lTp + ti−1, lTp + ti), l = 0, 1, . . ., Ti = ti − ti−1,
i ∈ S � {1, 2, . . . , S}, �S

i=1Ti = Tp, t0 = 0 and tS = Tp, with
the relevant dynamics given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A(t) = Ai(t) = Ai + t−lTp−ti−1
Ti

(Ai+1 − Ai)

B(t) = Bi(t) = Bi + t−lTp−ti−1
Ti

(Bi+1 − Bi)

C(t) = Ci(t) = Ci + t−lTp−ti−1
Ti

(Ci+1 − Ci)

D(t) = Di(t) = Di + t−lTp−ti−1
Ti

(Di+1 − Di)

E(t) = Ei(t) = Ei + t−lTp−ti−1
Ti

(Ei+1 − Ei)

(2)

where (Ai,Bi,Ci,Di,Ei), i ∈ S, are known constant matrices
with appropriate dimensions. For all t ≥ 0, nonlinear function
f (t, x(t)) is supposed to satisfy f (t, 0) = 0 and consists of S
parts over each period, that is, f (t, x(t)) = fi(t, x(t)), i ∈ S.
For t ∈ [lTp + ti−1, lTp + ti), fi(t, x(t)) satisfies

‖fi(t, x(t))‖ ≤ αi‖Fix(t)‖, i ∈ S (3)

where Fi ∈ R
nx×nx , i ∈ S, are constant matrices and scalars

αi > 0, i ∈ S. The control input in (1) is subject to actuator
saturation SAT(·) : R

nu → R
nu , that is

SAT(u(t)) = [sat(u1), sat(u2), . . . , sat
(
unu

)]T (4)
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where sat(uj) = sgn(uj) · min(1, |uj|) for the jth actuator,
j = 1, 2, . . . , nu.

Remark 1: The PPTVS model composed of LTV subsys-
tems was first proposed in [26] to provide time-varying
approximation and simplification for continuous-time periodic
systems. In practice, however, it is usually difficult to obtain
the exact LTV dynamics of each subsystem due to model
uncertainties. In addition, when the system is affected by
nonlinear perturbations, it can be challenging to use spline
fitting to capture the subsystem dynamics. Thus, the nonlinear
function f (t, x(t)) in PPTVS (1) not only helps compensate
potential nonlinearities like model uncertainties and inaccu-
racy, but also characterizes the perturbations induced by the
modelling process. Note that f (t, x(t)) may not be periodic,
but it has a bound on its linear growth rate for t ≥ 0.

In this article, the output tracking controller design is
based on a stable periodic reference model sharing the same
dimension of output with PPTVS (1)

ẋr(t) = Ar(t)xr(t)+ r(t)

zr(t) = Cr(t)xr(t) (5)

where xr(t) ∈ R
nr , zr(t) ∈ R

nz , and r(t) ∈ R
nr are the reference

state continuous for all t ≥ 0, reference output and energy-
bounded reference input, respectively; Ar(t) = Ar(t + Tp),
Er(t) = Er(t + Tp), Cr(t) = Cr(t + Tp) are prescribed periodic
matrix functions.

Remark 2: Due to the wide application of periodic systems
in practice, this work considers a periodic time-varying refer-
ence model, aiming to design a periodic controller which can
stabilize the system and give desirable closed-loop behavior
as well as performance. The reference model should be stable
since the performance is considered from the energy-to-peak
perspective.

Let ξ(t) = [xT(t), xT
r (t)]

T, consider a periodic time-varying
control law for output tracking

u(t) = K̃i(t)ξ(t) = [Kx,i(t) Kr,i(t)
]
ξ(t)

t ∈ [lTp + ti−1, lTp + ti) (6)

where Kx,i(t) and Kr,i(t) are continuous in the ith subsystem,
and Kx,i(t) = Kx,i(t+Tp), Kr,i(t) = Kr,i(t+Tp), i ∈ S. Define
the output tracking error as er(t) = z(t) − zr(t). Combining
PPTVS (1) with reference model (5) and control law (6), an
augmented closed-loop system is obtained

ξ̇ (t) = Ãi(t)ξ(t)+ f̃i(t, ξ(t))+ B̃i(t)SAT(K̃i(t)ξ(t))

+ Ẽi(t)�(t)

er(t) = C̃i(t)ξ(t)+ D̃i(t)SAT(K̃i(t)ξ(t))

t ∈ [lTp + ti−1, lTp + ti) (7)

where

Ãi(t) =
[Ai(t) 0

0 Ar(t)

]

, B̃i(t) =
[Bi(t)

0

]

C̃i(t) = [Ci(t) −Cr(t)
]
, D̃i(t) = Di(t)

Ẽi(t) =
[Ei(t) 0

0 I

]

�(t) =
[

w(t)
r(t)

]

, f̃i(t, ξ(t)) =
[

fi(t, x(t))
0

]

.

The augmented system in (7) is a PPTVS with S time-varying
subsystems affected by saturated control input and nonlinear
perturbations. From (3), one has

∥
∥
∥f̃i(t, ξ(t))

∥
∥
∥ ≤ αi

∥
∥F̃iξ(t)

∥
∥, i ∈ S (8)

where F̃i = [
Fi 0

]
, i ∈ S. Aimed at the analysis of energy-

to-peak performance, the following assumption is considered
throughout this article.

Assumption 1: The energy-bounded disturbance w(t) and
reference input r(t) satisfy ‖w(t)‖ ≤ wmax and ‖r(t)‖ ≤ rmax,
respectively, where wmax and rmax are known nonnegative
constants.

In previous study [26], a helpful lemma on the property
of a class of matrix polynomials is given. However, it only
considered the sufficient condition for the definiteness property
of matrix polynomials. In this article, the property is extended
below to facilitate the following analysis.

Lemma 1: Let g : [0, 1]k → R
n×n be a matrix polynomial

function defined as

g(η1, η2, . . . , ηk)=�0+η1�1+η1η2�2+ · · · +
⎛

⎝
k∏

j=1

ηj

⎞

⎠�k (9)

where scalars ηj ∈ [0, 1], j = 1, 2, . . . , k, k ∈ Z
+, and

�0,�1, . . . , �k are n × n real symmetric matrices. Real sym-
metric matrix polynomial g(η1, η2, . . . , ηk) < 0 (resp.,> 0),
if and only if

d∑

j=0

�j < 0 (resp.,> 0), d = 0, 1, . . . , k. (10)

Proof: Without loss of generality, one can take the proof
of negative definiteness for example. The sufficiency that
considers the negative definiteness of matrix polynomial
g(η1, η2, . . . , ηk) for integer k ≥ 2 has been proved, see the
proof of [26, Lemma 2]. For k = 1, with η1 ∈ [0, 1], symmet-
ric matrix inequalities�0 < 0 and�0+�1 < 0 following (10),
it is easy to obtain

g(η1) = �0 + η1�1 = (1 − η1)�0 + η1(�0 +�1) < 0 (11)

indicating that the sufficiency holds for k ∈ Z
+.

The necessity that considers the negative definiteness of
real symmetric matrix polynomial g(η1, η2, . . . , ηk) can be
proved based on the property of convex combination: With
g(η1, η2, . . . , ηk) < 0 and scalars ηj ∈ [0, 1], j = 1, 2, . . . , k,
k ∈ Z

+, one has g(η1, η2, . . . , ηk) = �0 + η1(�1 + η2�2 +
· · · + (

∏k
j=2 ηj)�k) < 0, which implies �0 < 0 and

�0 +�1 +η2�2 +· · ·+ (∏k
j=2 ηj)�k = (�0 +�1)+η2(�2 +

· · · + (
∏k

j=3 ηj)�k) < 0, further indicating that �0 +�1 < 0

and �0 +�1 +�2 + η3(�3 · · · + (
∏k

j=4 ηj)�k) < 0. Through
recursive implementation one can obtain matrix inequalities as
follows:

�0 < 0
�0 +�1 < 0

�0 +�1 +�2 < 0
...

�0 +�1 +�2 + · · · +�k < 0
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which can be summarized by (10) for all k ≥ 1. The necessity
is proved.

On the other hand, the proof for the positive definiteness
of g(η1, η2, . . . , ηk) can be easily obtained by replacing “<”
with “>” in the aforementioned procedures, which are omitted
here. Thus, the lemma provides an equivalent condition for
the property in either the negative definiteness or the positive
definiteness of matrix polynomial g(η1, η2, . . . , ηk) for ηj ∈
[0, 1], j = 1, 2, . . . , k, k ∈ Z

+.
Remark 3: Given k ≥ 1, k ∈ Z

+, there are 2k combi-
nations of (η1, η2, . . . , ηk−1, ηk) taking the endpoint values
0 and 1, that is, (η1, η2, . . . , ηk−1, ηk) = {(0, 0, . . . , 0, 0),
(0, 0, . . . , 0, 1), (0, 0, . . . , 1, 0), (0, 0, . . . , 1, 1), . . . , (1, 1, . . . ,
1, 1)}. The (k + 1) matrix inequalities in (10) can also be
seen as the result of substituting these combinations into (9).

In this article, one mainly focuses on limiting the upper
bound of output tracking error. Hence, the energy-to-peak (also
known as L2-L∞ or generalized H2) performance index is
considered. The objectives are expressed from two aspects.

1) Exponential Stability: Augmented system (7) with
�(t) = 0 is exponentially stable.

2) Tracking Performance: For all nonzero w, r ∈ L2[0,∞),
the effect of �(t) on the output tracking error er(t)
is attenuated below a desired level γ > 0. More
specifically, under zero initial conditions, it is required
that

sup
∀t≥0

eT
r (t)er(t) < γ 2

∫ ∞

0
�T(t)�(t)dt. (12)

III. MAIN RESULTS

In this section, the closed-loop stability and tracking
performance are analyzed under the effects of saturation and
nonlinear perturbations. First, a bounding region condition
is proposed to guarantee a norm-bounded control input. A
sufficient condition of stability with energy-to-peak tracking
performance index are hence derived as the basis of controller
design. The criterion of output tracking control and a heuristic
iterative convex optimization algorithm are established.

A. Stability and Performance Analysis

For convenience, the jth row of K̃i(t) for the ith subsystem
is denoted as K̃ij(t), which is corresponding to the jth actuator.
Under Assumption 1, it holds that

⎧
⎨

⎩

wT(t)w(t) ≤ w2
max

rT(t)r(t) ≤ r2
max

�max �
√

w2
max + r2

max ≥ 0.
(13)

For the augmented system in (7), define its reachable set as

R ξ �
{
ξ(t) ∈ R

nx+nr | ξ(0) = 0

ξ(t),�(t) satisfy (7) and (13), t ≥ 0}. (14)

The following bounding region of reachable set R ξ is used
to deal with the periodic piecewise time-varying dynamics:

E (P(t)) �
{
ξ ∈ R

nx+nr | ξTP(t)ξ ≤ 1, P(t) > 0
}

(15)

where P(t) > 0 is a continuous Tp-periodic matrix function
with

P(t) = Pi(t) > 0, t ∈ [lTp + ti−1, lTp + ti), i ∈ S (16)

and limt→lTp+t−i
Pi(t) = Pi+1(lTp + ti), l = 0, 1, . . . , i =

1, 2, . . . , S, PS+1(t) = P1(t). The upper right Dini derivative
of P(t) is described as

D+P(t) = D+Pi(t) = lim sup
h→0+

Pi(t + h)− Pi(t)

h
t ∈ [lTp + ti−1, lTp + ti). (17)

A region-bounding condition is proposed to deal with the
actuator saturation.

Theorem 1 (Region-Bounding Condition): Consider aug-
mented system (7) with the periodic control law in (6) and
disturbance � satisfying (13). If there exist scalars βi > 0,
υi > 0, i = 1, 2, . . . , S, and real symmetric Tp-periodic,
continuous and Dini-differentiable matrix function P(t)
defined on t ∈ [0,∞) such that, for t ∈ [lTp + ti−1, lTp + ti),
P(t) = Pi(t) > 0, i = 1, 2, . . . , S, j = 1, 2, . . . , nu, the
following conditions hold:

[ Pi(t) ∗
K̃ij(t) 1

]

≥ 0 (18)
⎡

⎢
⎣

�i(t) ∗ ∗
Pi(t) −υiI ∗

ẼT
i (t)Pi(t) 0 − βi

� 2
max

I

⎤

⎥
⎦ < 0 (19)

where

�i(t) = sym
(
Pi(t)Ãi(t)+ Pi(t)B̃i(t)K̃i(t)

)

+ υiα
2
i F̃T

i F̃i + D+Pi(t)+ βiPi(t) (20)

then a region bounding the reachable set R ξ of system (7)
is given by E (P(t)) in form of (15). The control input u(t)
satisfies ‖u(t)‖ ≤ 1 and is bounded within E (P(t)).

The detailed proof of Theorem 1 is given in the Appendix.
Remark 4: Theorem 1 serves as the constraint of control

input u(t) by bounding the system state in a desired reachable
set. In the following controller synthesis based on condi-
tions (18) and (19), one does not need to care about the size
of the reachable set, but only needs to ensure that it can be
appropriately bounded.

Based on Theorem 1, the following condition is presented to
guarantee the closed-loop stability and energy-to-peak output
tracking performance.

Theorem 2 (Stability With Tracking Performance):
Consider augmented system (7) with output tracking control
law (6) and nonzero w, r ∈ L2[0,∞) under Assumption 1.
Given a scalar λ∗ > 0, if there exist scalars υ̃i > 0, λi,
i = 1, 2, . . . , S, λmin � min

i∈S
(λi), λmax � max

i∈S
(λi), γ > 0, and

real symmetric Tp-periodic, continuous and Dini-differentiable
matrix function P(t) defined on t ∈ [0,∞) such that, for
t ∈ [lTp + ti−1, lTp + ti), i = 1, 2, . . . , S, P(t) = Pi(t) > 0,
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inequalities (18), (19), and the following conditions hold:
⎡

⎢
⎢
⎢
⎣

sym
(
Pi(t)Ãi(t)+ Pi(t)B̃i(t)K̃i(t)

)

+υ̃iα
2
i F̃T

i F̃i + D+Pi(t)+ λiPi(t)
∗ ∗

Pi(t) −υ̃iI ∗
ẼT

i (t)Pi(t) 0 −I

⎤

⎥
⎥
⎥
⎦
< 0

(21)
[ −Pi(t) ∗
C̃i(t)+ D̃i(t)K̃i(t) −γ 2I

]

< 0 (22)

2λ∗Tp −
S∑

i=1

λiTi ≤ 0 (23)

then the system is exponentially stable, and satisfies the
energy-to-peak output tracking performance (12) with γ =
γ eTp max(2λ∗−λmin,0).

Proof: Consider the Lyapunov function V(t) in (A.1) for
ξ(t) �= 0, t ∈ [lTp + ti−1, lTp + ti), i = 1, 2, . . . , S. When
inequalities (18) and (19) hold, by Theorem 1 it is guaranteed
that uT(t)u(t) ≤ 1. With scalars υ̃i > 0 and αi > 0, following
the similar procedures in the proof of Theorem 1, one obtains:

D+Vi(t)+ λiVi(t)+ υ̃i

(
α2

i ξ
T(t)F̃T

i F̃iξ(t)− f̃ T
i (t)f̃i(t)

)

− �T(t)�(t)

= [ ξT(t) f̃ T
i (t) �T(t)

]

i(t)

⎡

⎣
ξ(t)
f̃i(t)
�(t)

⎤

⎦ (24)

where


i(t) =

⎡

⎢
⎢
⎢
⎣

sym
(
Pi(t)Ãi(t)+ Pi(t)B̃i(t)K̃i(t)

)

+υ̃iα
2
i F̃T

i F̃i + D+Pi(t)+ λiPi(t)
∗ ∗

Pi(t) −υ̃iI ∗
ẼT

i (t)Pi(t) 0 −I.

⎤

⎥
⎥
⎥
⎦
.

From (8), one has υ̃i(α
2
i ξ

T(t)F̃T
i F̃iξ(t) − f̃ T

i (t)f̃i(t)) ≥ 0.
Combining condition (21) one has 
i(t) < 0, which implies
that for t ∈ [lTp + ti−1, lTp + ti)

D+Vi(t) < −λiVi(t)+�T(t)�(t)

− υ̃i

(
α2

i ξ
T(t)F̃T

i F̃iξ(t)− f̃ T
i (t)f̃i(t)

)

< −λiVi(t)+�T(t)�(t). (25)

Integrating (25), it follows that:

V(t) ≤ e−λi(t−lTp−ti−1)V
(
lTp + ti−1

)

+
∫ t

lTp+ti−1

e−λi(t−τ)�T(τ )�(τ)dτ

t ∈ [lTp + ti−1, lTp + ti). (26)

When �(t) = 0, by (21) and (23) it is easy to obtain that
D+Vi(t) < −λiVi(t) for t ∈ [lTp + ti−1, lTp + ti), leading
to V(lTp) ≤ e−2λ∗lTpV(0). According to the previous study
on the stability of continuous-time PPTVSs [25], it can be
proved that the augmented system in (7) with �(t) = 0 is λ∗-
exponentially stable, where the augmented state ξ(t) satisfies

‖ξ(t)‖ ≤ κe−λ∗t‖ξ(0)‖ ∀t ≥ 0 (27)

where κ = eλ
∗Tp

√

λ(P(0))/λ(P(0))∏S
i=1 max(1, eψiTi) ≥

1, λ(·) and λ(·), respectively, denote the maximum and
minimum eigenvalues; ψi is a constant satisfying ψi ≥
(1/2)λ(sym(Ãi(t))) for t ∈ [lTp + ti−1, lTp + ti), i ∈ S.

Moreover, consider nonzero w, r ∈ L2[0,∞) leading to� ∈
L2[0,∞) and �(t) �= 0. Under zero initial conditions, for
t ∈ [lTp + ti−1, lTp + ti), from (26) one has

V(t) = ξT(t)P(t)ξ(t)

≤
l∑

j=1

S∑

k=1

∫ (j−1)Tp+tk

(j−1)Tp+tk−1

exp

⎛

⎝−λk
(
(j−1)Tp+tk−τ

)

−
S∑

q=k+1

λqTq − (l − j)
S∑

q=1

λqTq

−
i−1∑

q=1

λqTq − λi
(
t−lTp − ti−1

)

⎞

⎠�T(τ )�(τ)dτ

+
i−1∑

k=1

∫ lTp+tk

lTp+tk−1

exp

⎛

⎝−λk
(
lTp+tk−τ

)

−
i−1∑

q=k+1

λqTq−λi
(
t−lTp−ti−1

)

⎞

⎠�T(τ )�(τ)dτ

+
∫ t

lTp+ti−1

exp(−λi(t−τ))�T(τ )�(τ)dτ. (28)

Following a derivation process similar to those presented
in [26] to tackle the exponential functions in (28) yields:

ξT(t)P(t)ξ(t)
≤
∫ t

0
e−2λ∗(t−τ)+2Tp max(2λ∗−λmin,0)�T(τ )�(τ)dτ

≤ e2Tp max(2λ∗−λmin,0)
∫ t

0
�T(τ )�(τ)dτ. (29)

On the other hand, applying Schur complement equivalence
to (22), for t ∈ [lTp + ti−1, lTp + ti) one has

ξT(t)
(
C̃i(t)+ D̃i(t)K̃i(t)

)T(C̃i(t)+ D̃i(t)K̃i(t)
)
ξ(t)

< γ 2ξT(t)Pi(t)ξ(t)

≤ γ 2e2Tp max(2λ∗−λmin,0)
∫ t

0
�T(τ )�(τ)dτ.

Taking the supremum over t > 0, it follows that:

sup
∀t

eT
r (t)er(t) < γ 2

∫ ∞

0
�T(τ )�(τ)dτ

where γ = γ eTp max(2λ∗−λmin) > 0 indicates the energy-to-peak
performance. Therefore, augmented system (7) with nonzero
w, r ∈ L2[0,∞) is exponentially stable and satisfies the output
tracking performance described in (12).

Remark 5: In Theorem 2, conditions (18), (19),
and (21)–(23) construct a general closed-loop stability
framework with respect to the actuator saturation, nonlin-
ear perturbations as well as the considered output tracking
performance. Inequality (23) guarantees that the whole PPTVS
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is exponentially stable. Under appropriate optimization frame-
works, one may not need to impose the values of λi, i ∈ S,
which creates more flexibility in the control scheme.

If one considers a class of PPTVSs given by (1) and (2) but
without control input and nonlinear perturbations, a corollary
of basic L2-L∞ performance for stable PPTVSs can be derived
as follows.

Corollary 1 (Basic L2-L∞ Performance for PPTVSs):
Consider PPTVS (1) with f (t, x(t)) = 0, u(t) = 0 and
nonzero w ∈ L2[0,∞). Given a scalar λ∗ > 0, if there exist
scalars λi, i = 1, 2, . . . , S, λmin � min

i∈S
(λi), λmax � max

i∈S
(λi),

γ > 0, and real symmetric Tp-periodic, continuous and Dini-
differentiable matrix function Z(t) defined on t ∈ [0,∞) such
that, for t ∈ [lTp + ti−1, lTp + ti), i = 1, 2, . . . , S, Z(t) =
Zi(t) > 0, inequality (23) and the following conditions hold:

⎡

⎣
sym(Zi(t)Ai(t))

+D+Zi(t)+ λiZi(t)
∗

ET
i (t)Zi(t) −I

⎤

⎦ < 0 (30)

[−Zi(t) ∗
Ci(t) −γ 2I

]

< 0 (31)

then the system is exponentially stable with L2-L∞
performance described by γ = γ eTp max(2λ∗−λmin,0).

Note that the conditions in Theorems 1 and 2 contain time-
varying terms that cannot be directly used in computing the
controller gains. To solve the problem by convex optimization
techniques, the controller design and optimization will be
further discussed in the next section.

B. Controller Design and Optimization

Since the known parts of each subsystem in PPTVS (1)
are LTV as given by (2), from a perspective of subinterval
segmentation for t ∈ [lTp+ti−1, lTp+ti), i ∈ S, the LTV matrix
functions in augmented system (7) can be approximated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ãi(t) = Ãi,m−1 + σi,m(t)�Ãi,m−1

B̃i(t) = B̃i,m−1 + σi,m(t)�B̃i,m−1

C̃i(t) = C̃i,m−1 + σi,m(t)�C̃i,m−1

D̃i(t) = D̃i,m−1 + σi,m(t)�D̃i,m−1

Ẽi(t) = Ẽi,m−1 + σi,m(t)�Ẽi,m−1

(32)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Ãi,m−1 � Ãi,m − Ãi,m−1

�B̃i,m−1 � B̃i,m − B̃i,m−1

�C̃i,m−1 � C̃i,m − C̃i,m−1

�D̃i,m−1 � D̃i,m − D̃i,m−1

�Ẽi,m−1 � Ẽi,m − Ẽi,m−1

(33)

and σi,m(t) = Mi(t − (m − 1)[Ti/Mi])/Ti ∈ [0, 1), m =
1, 2, . . . ,Mi, with prescribed Mi ∈ Z

+, i = 1, 2, . . . , S.
Constant matrices (Ãi,m, B̃i,m, C̃i,m, D̃i,m, Ẽi,m) are obtained as

follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ãi,m =
[

Ai + m
Mi
(Ai+1 − Ai) 0

0 Ar

(
lTp + ti−1 + mTi

Mi

)

]

B̃i,m =
[

Bi + m
Mi
(Bi+1 − Bi)

0

]

C̃i,m =
[

Ci + m
Mi
(Ci+1 − Ci) −Cr

(
lTp + ti−1 + mTi

Mi

)]

D̃i,m = Di + m
Mi
(Di+1 − Di)

Ẽi,m =
[

Ei + m
Mi
(Ei+1 − Ei) 0

0 I

]

.

(34)

Based on the results in Theorems 1 and 2, a condition for
designing the output tracking controller is presented.

Theorem 3 (Controller Design): Consider augmented
system (7) with fundamental period Tp > 0, output track-
ing control law (6) and nonzero w, r ∈ L2[0,∞) under
Assumption 1. Given Mi ∈ Z

+, i = 1, 2, . . . , S, and a scalar
λ∗ > 0, the system is exponentially stable and satisfies
the energy-to-peak output tracking performance (12) with
γ = γ eTp max(2λ∗−λmin,0) if there exist scalars υi > 0, βi > 0,
υ̃i > 0, λi, i = 1, 2, . . . , S, λmin � min

i∈S
(λi), λmax � max

i∈S
(λi),

γ > 0, matrices Qi,m > 0, and matrices Ui,m with Ui,m,j

denoting its jth row, i = 1, 2, . . . , S, m = 1, 2, . . . ,Mi,
j = 1, 2, . . . , nu, such that inequality (23) and the following
conditions hold:

[
Qi,m ∗
Ui,m,j 1

]

≥ 0 (35)
[
�0,i,m ∗
�0,i,m ϒi

]

< 0 (36)
[
�0,i,m +�1,i,m ∗

�1,i,m ϒi

]

< 0 (37)
[
�0,i,m +�1,i,m +�2,i,m ∗

�1,i,m ϒi

]

< 0 (38)
[
�0,i,m ∗
�0,i,m ϒ i

]

< 0 (39)
[
�0,i,m +�1,i,m ∗

�1,i,m ϒ i

]

< 0 (40)
[
�0,i,m +�1,i,m +�2,i,m ∗

�1,i,m ϒ i

]

< 0 (41)
[−Qi,m−1 ∗
�0,i,m −γ 2I

]

< 0 (42)
[ −Qi,m ∗
�0,i,m +�1,i,m −γ 2I

]

< 0 (43)
[ −Qi,m ∗
�0,i,m +�1,i,m +�2,i,m −γ 2I

]

< 0 (44)

Qi,Mi = Qi+1,0, QS,Mi = Q1,0 (45)

where the approximated matrices in (32) and (34) are consid-
ered, and

�Qi,m−1 = Qi,m − Qi,m−1, �Ui,m−1 = Ui,m − Ui,m−1

�0,i,m = sym
(

Ãi,m−1Qi,m−1 + B̃i,m−1Ui,m−1

)

− Mi

Ti
�Qi,m−1 + βiQi,m−1
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�1,i,m = sym
(

Ãi,m−1�Qi,m−1 +�Ãi,m−1Qi,m−1

+ B̃i,m−1�Ui,m−1 +�B̃i,m−1Ui,m−1

)

+ βi�Qi,m−1

�2,i,m = sym
(
�Ãi,m−1�Qi,m−1 +�B̃i,m−1�Ui,m−1

)

�0,i,m = [ I Ẽi,m−1 υiQi,m−1F̃T
i

]T

�1,i,m = [ I Ẽi,m υiQi,mF̃T
i

]T

ϒi = diag

(

−υiI,− βi

� 2
max

I,− υi

α2
i

I

)

�0,i,m = sym
(

Ãi,m−1Qi,m−1 + B̃i,m−1Ui,m−1

)

− Mi

Ti
�Qi,m−1 + λiQi,m−1

�1,i,m = sym
(

Ãi,m−1�Qi,m−1 +�Ãi,m−1Qi,m−1

+ B̃i,m−1�Ui,m−1 +�B̃i,m−1Ui,m−1

)

+ λi�Qi,m−1

�2,i,m = sym
(
�Ãi,m−1�Qi,m−1 +�B̃i,m−1�Ui,m−1

)

�0,i,m = [ I Ẽi,m−1 υ̃iQi,m−1F̃T
i

]T

�1,i,m = [ I Ẽi,m υ̃iQi,mF̃T
i

]T

ϒ i = diag

(

−υ̃iI,−I,− υ̃i

α2
i

I

)

�0,i,m = C̃i,m−1Qi,m−1 + D̃i,m−1Ui,m−1

�1,i,m = �C̃i,m−1Qi,m−1 +�D̃i,m−1Ui,m−1

+ C̃i,m−1�Qi,m−1 + D̃i,m−1�Ui,m−1

�2,i,m = �C̃i,m−1�Qi,m−1 +�D̃i,m−1�Ui,m−1.

The Tp-periodic output tracking controller gains can be com-
puted by

K̃(t) = K̃i(t) = Ui(t)Q−1
i (t), t ∈ [lTp + ti−1, lTp + ti) (46)

where for t ∈ [lTp+ti−1+(m−1)[Ti/Mi], lTp+ti−1+m[Ti/Mi])
over the ith subinterval, time-varying matrix functions Q(t)
and U(t) are obtained by

Q(t) = Qi(t) = Qi,m−1 + σi,m(t)�Qi,m−1 (47)

U(t) = Ui(t) = Ui,m−1 + σi,m(t)�Ui,m−1 (48)

with σi,m(t) = Mi(t − (m − 1)[Ti/Mi])/Ti ∈ [0, 1), i =
1, 2, . . . , S, m = 1, 2, . . . ,Mi.

Proof: First, from (45), (47), and (48), it can be seen that
Q(t) is a periodic matrix function continuous at all the switch-
ing instants for t ≥ 0. For t ∈ [lTp+ti−1+(m−1)[Ti/Mi], lTp+
ti−1+m[Ti/Mi]), Mi ∈ Z

+, i = 1, 2, . . . , S, it has the following
upper right Dini derivative:

D+Q(t) = Mi

Ti

(
Qi,m − Qi,m−1

) = Mi

Ti
�Qi,m−1. (49)

From (35), one has
[Qi(t) ∗
Uij(t) 1

]

≥ 0, j = 1, 2, . . . , nu (50)

where Uij(t) denotes the jth row of matrix function Ui(t), i ∈ S.

Based on (32), (34), and the case of k = 2 in Lemma 1,
consider η1 = η2 = σi,m(t) ∈ [0, 1) ⊂ [0, 1] for g(η1, η2).
Since

�1,i,m = [ I Ẽi,m υiQi,mF̃T
i

]T

= [I Ẽi,m−1 +�Ẽi,m−1 υi
(
Qi,m−1 +�Qi,m−1

)
F̃T

i

]T

from Lemma 1 and conditions (36)–(38), for t ∈ [lTp + ti−1 +
(m − 1)[Ti/Mi], lTp + ti−1 + m[Ti/Mi]) one has
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sym
(
Ãi(t)Qi(t)

+ B̃i(t)Ui(t)
)

−D+Qi(t)+ βiQi(t)

∗ ∗ ∗

I −υiI ∗ ∗
ẼT

i (t) 0 − βi
� 2

max
I ∗

υiF̃iQi(t) 0 0 − υi

α2
i

I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (51)

where

sym
(
Ãi(t)Qi(t)+ B̃i(t)Ui(t)

)
− D+Qi(t)+ βiQi(t)

= sym
((

Ãi,m−1 + σi,m(t)�Ãi,m−1

)

× (
Qi,m−1 + σi,m(t)�Qi,m−1

)

+ (
B̃i,m−1 + σi,m(t)�B̃i,m−1

)

× (
Ui,m−1 + σi,m(t)�Ui,m−1

))

− Mi

Ti
�Qi,m−1 + βi

(
Qi,m−1 + σi,m(t)�Qi,m−1

)

= sym
(

Ãi,m−1Qi,m−1 + B̃i,m−1Ui,m−1

)

− Mi

Ti
�Qi,m−1 + βiQi,m−1

+ σi,m(t)
(

sym
(

Ãi,m−1�Qi,m−1 +�Ãi,m−1Qi,m−1

+ B̃i,m−1�Ui,m−1 +�B̃i,m−1Ui,m−1

)

+ βi�Qi,m−1

)

+ σ 2
i,m(t)sym

(
�Ãi,m−1�Qi,m−1 +�B̃i,m−1�Ui,m−1

)

= �0,i,m + σi,m(t)�1,i,m + σ 2
i,m(t)�2,i,m

and
⎡

⎣
I

ẼT
i (t)

υiF̃iQi(t)

⎤

⎦ =
⎡

⎣

I
(
Ẽi,m−1 + σi,m(t)�Ẽi,m−1

)T

υiF̃i
(
Qi,m−1 + σi,m(t)�Qi,m−1

)

⎤

⎦

=
⎡

⎣
I

ẼT
i,m−1

υiF̃iQi,m−1

⎤

⎦+ σi,m(t)

⎡

⎣
0

�ẼT
i,m−1

υiF̃i�Qi,m−1.

⎤

⎦.

Similarly, combing conditions (39)–(38) and (42)–(44) with
Lemma 1, respectively, the following results can be derived:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sym
(
Ãi(t)Qi(t)

+B̃i(t)Ui(t)
)

−D+Qi(t)+ λiQi(t)

∗ ∗ ∗

I −υ̃iI ∗ ∗
ẼT

i (t) 0 −I ∗
υ̃iF̃iQi(t) 0 0 − υ̃i

α2
i

I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (52)
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[ −Qi(t) ∗
C̃i(t)Qi(t)+ D̃i(t)Ui(t) −γ 2I

]

< 0 (53)

where

sym
(
Ãi(t)Qi(t)+ B̃i(t)Ui(t)

)
− D+Qi(t)+ λiQi(t)

= �0,i,m + σi,m(t)�1,i,m + σ 2
i,m(t)�2,i,m

C̃i(t)Qi(t)+ D̃i(t)Ui(t)

=
(

C̃i,m−1 + σi,m(t)�C̃i,m−1

)(
Qi,m−1 + σi,m(t)�Qi,m−1

)

+ (
D̃i,m−1 + σi,m(t)�D̃i,m−1

)(
Ui,m−1 + σi,m(t)�Ui,m−1

)

= �0,i,m + σi,m(t)�1,i,m + σ 2
i,m(t)�2,i,m.

Multiply both sides of (51) and (52) with diag(Q−1
i (t), I, I, I),

and multiply both sides of inequalities (50) and (53) with
diag(Q−1

i (t), I). Using Schur complement equivalence and
the fact D+Q−1

i (t) = −Q−1
i (t)D+Qi(t)Q−1

i (t), one can
derive conditions in the form of (18), (19), (21), and (22) as
given in Theorems 1 and 2. Therefore, when conditions (23)
and (35)–(45) hold, augmented system (7) with periodic time-
varying controller (6) is exponentially stable, and satisfies
the energy-to-peak output tracking performance described by
γ = γ eTp max(2λ∗−λmin,0).

Remark 6: The conditions in Theorem 3 are constructed
based on the segmentations of subintervals defined by Mi,
i ∈ S. The periodic matrix functions in linear interpolative
forms provide an approximation of the time-varying dynam-
ics in the augmented system. Using Lemma 1, the conditions
in Theorem 2 can hence be achieved by those in Theorem 3
that are amenable to convex optimization.

In Theorem 3, periodic matrix function Q(t) is continu-
ous of t at all the switching instants for t ≥ 0, while U(t)
is only continuous over each subinterval and not necessarily
continuous at the switching instants. If one imposes the con-
tinuity of matrix function U(t) at all the switching instants,
the periodic time-varying controller gains K̃(t) will become
continuous for t ≥ 0, improving the smoothness of dynamics
in practical applications. The condition for computing contin-
uous output tracking controller gains is given in the following
corollary.

Corollary 2: Consider augmented system (7) with funda-
mental period Tp > 0, output tracking control law (6)
and nonzero w, r ∈ L2[0,∞) under Assumption 1. Given
Mi ∈ Z

+, i = 1, 2, . . . , S, and a scalar λ∗ > 0, the system
is exponentially stable and satisfies the energy-to-peak out-
put tracking performance (12) with γ = γ eTp max(2λ∗−λmin,0) if
there exist scalars υi > 0, βi > 0, υ̃i > 0, λi, i = 1, 2, . . . , S,
λmin � mini∈S(λi), λmax � maxi∈S(λi), γ > 0, matrices
Qi,m > 0, and matrices Ui,m with Ui,m,j denoting its jth row,
i = 1, 2, . . . , S, m = 1, 2, . . . ,Mi, j = 1, 2, . . . , nu, such that
conditions (23), (35)–(45), and the following equations hold:

Ui,Mi = Ui+1,0, US,Mi = U1,0. (54)

The Tp-periodic controller gains can be computed by (46)–(48)
and are continuous of t for t ≥ 0.

Remark 7: Theorem 3 and Corollary 2 share the same
number of matrix variables Qi,m as

∑S
i=1 Mi, while the corre-

sponding numbers of matrix variables Ui,m are S +∑S
i=1 Mi

and
∑S

i=1 Mi, respectively. The decision variable numbers are
as follows.

1) Theorem 3: 1+4S+[1/2](nx+nr)(nx+nr+1)
∑S

i=1 Mi+
nu(nx + nr)(S +∑S

i=1 Mi).
2) Corollary 2: 1 + 4S + (nx + nr)(nu +

[(nx + nr + 1)/2])
∑S

i=1 Mi.
For fixed system parameters, the computational complexity
mainly depends on the values of Mi, i ∈ S. Larger Mi can be
helpful to improve the feasibility and tracking performance,
while inevitably increases the computational burden. The
tradeoff between Mi and the desirable performance may be
referred to the previous work [34] on PPSs. Although the
method in [34] uses a similar periodic time-varying matrix
function, without Lemma 1 it is not applicable to the problem
in this article due to the time-varying terms in (51)–(53).

The feasibility problems, in Theorem 3 and Corollary 2
involving parameters υi, υ̃i, βi, λi and λ∗, contain bilinear
matrix inequality constraints. Since λ∗ > 0, condition (23)
can be simplified by letting λ∗ = ([

∑S
i=1 λiTi]/2Tp) > 0,

which implies

S∑

i=1

λiTi > 0. (55)

To tackle the bilinear terms, two types of tracking performance
can be considered through the following objectives of
optimization, respectively.

1) Energy-to-Peak Performance: Fix the positive scalars υi,
υ̃i, βi, and scalars λi satisfying (55), i = 1, 2, . . . , S, m =
1, 2, . . . ,Mi, solve the following optimization problem
to obtain matrices Qi,m > 0, Ui,m and scalar γ > 0:

min
Qi,m,Ui,m,γ

γ 2 subject to (35)–(45). (56)

2) Mixed Performance: Solve the following optimization
problem to obtain matrices Qi,m > 0, Ui,m and scalars
γ > 0, υi > 0, υ̃i > 0, λi, βi > 0:

min
Qi,m,Ui,m,γ,υi,υ̃i,λi,βi

γ 2 −
S∑

i=1

λiTi

subject to (35)–(45) and (55). (57)

Remark 8: The first objective of optimization in (56) using
given parameters is common in the relevant studies involv-
ing bilinear matrix inequality constraints [26], [28]. With
some fixed initial parameters, one can convert the optimization
problem to an LMI feasibility problem that can be directly
solved at the price of some conservatism. The parameters may
either be given based on trail-and-error, or searched via some
programs like genetic algorithm (GA) [35] by setting some
initial objectives to guarantee the feasibility.

The optimization problem in this article is essen-
tially a multiobjective one. To optimize the energy-to-peak
performance and the state convergence at the same time,
a heuristic iterative algorithm for output tracking con-
trol (Algorithm OTC) based on the mixed performance is
proposed.

Remark 9: In Algorithm OTC, the objectives of
optimization in steps 2 and 4 can lead to equivalent
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TABLE I
PARAMETER MATRICES AT THE ENDPOINTS OF SUBINTERVALS

Algorithm 1 OTC

Step 1: For i = 1, 2, . . . , S, given Mi ∈ Z
+, initial parameters υ(0)i >

0, υ̃(0)i > 0, β(0)i > 0, λ(0)i = 0. Set J (0)
1 = J (0)

2 = 0, a sufficiently
small tolerance � > 0 and the current number of iteration μ = 1.
Step 2: With fixed parameters υ(μ−1)

i , υ̃(μ−1)
i , β(μ−1)

i , λ(μ−1)
i , get

scalar γ > 0, matrices Qi,m > 0 and Ui,m, m = 1, 2, . . . ,Mi, i =
1, 2, . . . , S, through solving the following optimization problem:

min
Qi,m,Ui,m,γ

γ 2 subject to

{
(35)–(45), if K̃(t) discontinuous at switching instants

(35)–(45), (54), if K̃(t) continuous at switching instants

Let Q(μ)i,m = Qi,m, U(μ)i,m = Ui,m, J (μ)
1 = γ 2 −∑S

i=1 λ
(μ−1)
i Ti.

Step 3: If |J (μ)
1 − J (μ−1)

2 | < �, let λ∗ = 1
2Tp

∑S
i=1 λ

(μ−1)
i Ti,

STOP. Otherwise, go to Step 4.
Step 4: With fixed matrices Q(μ)i,m , U(μ)i,m , get scalars γ > 0, υi > 0,
υ̃i > 0, βi > 0 and λi, i = 1, 2, . . . , S, through solving the following
optimization problem:

min
υi,υ̃i,λi,βi

γ 2 −
S∑

i=1

λiTi subject to (36)–(44) and (55)

Let β(μ)i = βi, υ
(μ)
i = υi, λ

(μ)
i = λi, υ̃

(μ)
i = υ̃i. Denote J (μ)

2 =
γ 2 −∑S

i=1 λ
(μ)
i Ti.

Step 5: If |J (μ)
2 − J (μ)

1 | < �, let λ∗ = 1
2Tp

∑S
i=1 λ

(μ)
i Ti, STOP.

Otherwise, set μ = μ+ 1, then go to Step 2.
Step 6: Output the final solutions of scalars γ , λ∗, υi, υ̃i, βi, λi and
matrices Qi,m, Ui,m, m = 1, 2, . . . ,Mi, i = 1, 2, . . . , S. Compute
the controller gains based on (46)–(48), and the energy-to-peak
performance index γ = γ eTp max(2λ∗−λmin,0).

effects as the one in (57). Since the values of λi, i ∈ S,
are fixed in step 2, one only needs to minimize γ 2 to
continue the optimization process. By steps 3 and 5, the
mixed performance indices are gradually reduced, which
guarantees the convergence of the algorithm. With initial
parameters λ(0)i = 0, i ∈ S, the initialization of positive
scalars υ(0)i , υ̃(0)i and β(0)i just needs to ensure the feasibility
of the first iteration. Although the obtained results are locally
optimal, Algorithm OTC enables a simultaneous optimization
of both the tracking performance and the convergence rate
of closed-loop state. Based on the optimized λi, i ∈ S,

the closed-loop state satisfies an exponential decay rate
λ∗ = (1/2Tp)

∑S
i=1 λiTi.

IV. ILLUSTRATIVE EXAMPLE

To validate the proposed output tracking control scheme,
one considers an actuator saturated PPTVS with three subsys-
tems and corresponding nonlinear perturbations in form of (1).
Consider a fundamental period Tp = 3.5 with (T1,T2,T3) =
(1, 1.5, 1) in appropriate time unit, and real constant matrices
(Ai,Bi,Ci,Di,Ei), i = 1, 2, 3, satisfying (2). The parameter
matrices at the periodic subinterval endpoints (in other words,
the switching instants) are presented in Table I. The settings of
nonlinear perturbations for t ∈ [lTp + ti−1, lTp + ti), i = 1, 2, 3,
are given by

fi(t, x(t)) = αi

⎡

⎣

t
t+1 sin(x1(t))

sin(x2(t))
sin(x1(t)+ x3(t))

⎤

⎦

Fi =
⎡

⎣
1 0 0
0 1 0
1 0 1

⎤

⎦ (58)

with (α1, α2, α3) = (0.3, 0.4, 0.2), which guarantee the
requirement in (3). For x(0) = [1, 1, 1]T, the open-loop state
trajectory shown in Fig. 1 indicates that the PPTVS is unsta-
ble. Given a stable Tp-periodic reference system satisfying (5),
where

Ar(t) =
[−2 + sin(2π t/3.5) 0

1 − cos(2π t/3.5) −3

]

Cr(t) = [1.5 sin(2π t/3.5) 1
]
. (59)

To control the output z(t) aimed at tracking the reference
output zr(t), given the reference input and disturbance under
Assumption 1

r(t) =
[

e−0.1t cos(2π t/3.5)
e−0.1t sin(2π t/3.5)

]

w(t) = 0.75e−0.5t cos(t), t ≥ 0 (60)

which indicates �max = 1.25. The following two cases
are considered to illustrate the effectiveness of the proposed
approach using the MATLAB solver SeDuMi.

Case 1 (Comparison of Conservatism): First, consider the
case with fixed parameters λi to analyze the conservatism of
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TABLE II
COMPARISON OF TRACKING PERFORMANCE INDEX γ OBTAINED BY DIFFERENT VALUES OF M AND PARAMETER SETS

Fig. 1. Open-loop system state trajectory.

the proposed tracking control approach based on the actua-
tor saturated PPTVS represented by (1), (2), (58)–(60), and
Table I. For convenience of comparison, let Mi = M ≥ 1,
i = 1, 2, 3, and consider the following two sets of parameters.

1) Parameter Set 1: βi = 1, υi = 5, υ̃i = 5, λi = 1,
i = 1, 2, 3.

2) Parameter Set 2: β1 = 1.5, β2 = 1.2, β3 = 1.6, υ1 = 4,
υ2 = 5, υ3 = 6, υ̃1 = 5, υ̃2 = 6, υ̃3 = 4.5, λ1 = 1,
λ2 = 0.9, λ3 = 1.1.

For different values of M and parameter sets, the periodic con-
troller gains K̃(t) can be straightforwardly obtained by solving
the optimization problem in (56). With controller gains K̃(t)
that are discontinuous or continuous at the switching instants
under different values of M, the results of energy-to-peak
output tracking performance γ are shown in Table II.

From Table II, it can be observed that for both parame-
ter sets, the results of γ obtained with discontinuous K̃(t)
are smaller than those obtained with continuous K̃(t), since
the discontinuous controller gains can provide more flexibil-
ity in the solutions of matrix variables. In addition, larger
values of M can achieve less conservative results in energy-to-
peak performance γ , implying smaller upper bounds of output
tracking errors. Note that when M = 1, the corresponding
conditions in Algorithm OTC can be regarded as the exten-
sions based on the existing method in previous studies on
PPTVSs [26], [28]. For both cases with discontinuous and con-
tinuous controller gains, the values of γ obtained by M > 1
are smaller than those obtained by M = 1, which indicates a
lower conservatism achieved by the proposed approach than
the existing method.

Fig. 2. Variations of ‖Kx(t)‖ and ‖Kr(t)‖ over one period.

Fig. 3. Output tracking performance.

Case 2 (Iterative Optimization Scheme): For the considered
PPTVS, one uses Algorithm OTC initialized by M1 = 10,
M2 = 15, M3 = 10, λ(0)i = 0, β(0)i = 2, υ(0)i = υ̃

(0)
i = 5,

i = 1, 2, 3. K̃(t) is set to be continuous at all the switching
instants to obtain smoothly time-varying controller gains. After
4 iterations, the final parameters are obtained as follows:

(β1, β2, β3) = (1.5892, 1.4900, 1.6979)

(υ1, υ2, υ3) = (7.9039, 5.8647, 6.9556)

(υ̃1, υ̃2, υ̃3) = (8.1332, 5.7542, 13.1367)

(λ1, λ2, λ3) = (1.5611, 1.5649, 1.6507)

and the value of energy-to-peak performance index is obtained
as γ = 0.8984. According to (6), the time-varying controller
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Fig. 4. Closed-loop system state trajectory.

Fig. 5. Norm of the obtained control input u(t).

gains for t ≥ 0 can be denoted as

K̃(t) = [Kx(t) Kr(t)]. (61)

For convenience of illustration, the variations of ‖Kx(t)‖ and
‖Kr(t)‖ over one period are given in Fig. 2. The output track-
ing performance, closed-loop system state trajectory over 10
periods are shown in Figs. 3 and 4, respectively. It can be seen
that the controlled output z(t) under the designed controller
can track the variation of reference output zr(t), meanwhile
the closed-loop system is stable. Moreover, the norm of the
obtained control input u(t) is shown in Fig. 5, which indicates
uT(t)u(t) ≤ 1 and thus, avoids the actuator saturation.

V. CONCLUSION

In this article, the energy-to-peak output tracking con-
troller synthesis of a type of actuator saturated PPTVSs with
nonlinear perturbations has been presented. Combing the aug-
mented system approach and the negative definiteness property
of matrix polynomial inequalities, sufficient conditions for
closed-loop stability and controller design have been proposed
based on the Lyapunov functions under subinterval segmen-
tation approach. An iterative algorithm framework has been
established to provide the solutions of both state convergence

rate and energy-to-peak tracking performance. The results of
simulation and comparison under different cases of subinterval
segmentation have demonstrated the reduction of conservatism
in tracking performance, and the effectiveness of the proposed
Algorithm OTC has been illustrated. In future work, track-
ing control issues under strong nonlinear conditions and
more general actuator saturations will be considered. Some
polynomial-based techniques [36] and helpful properties of
convex hulls [37] could also be integrated to deal with the
difficulties in periodic control brought by more complicated
saturations.

APPENDIX

Proof of Theorem 1: With (13)–(17), consider a quadratic
Lyapunov function candidate

V(t) = ξT(t)P(t)ξ(t) (A.1)

with periodic matrix function P(t) satisfying (16) and (17).
For ξ(t) �= 0, V(t) can be rewritten as V(t) = Vi(t) =
ξT(t)Pi(t)ξ(t) > 0, t ∈ [lTp + ti−1, lTp + ti). When con-
dition (19) holds, for t ∈ [lTp + ti−1, lTp + ti), denote
f̃i(t) � f̃i(t, ξ(t)) for conciseness, then one has

D+Vi(t)+ βiVi(t)+ υi

(
α2

i ξ
T(t)F̃T

i F̃iξ(t)− f̃ T
i (t)f̃i(t)

)

− βi

� 2
max

�T(t)�(t)

= ξT(t)
(

sym
(
Pi(t)Ãi(t)+ Pi(t)B̃i(t)K̃i(t)

)

+ υiα
2
i F̃T

i F̃i + D+Pi(t)+ βiPi(t)
)
ξ(t)

+ sym
(

f̃ T
i (t)Pi(t)ξ(t)+�T(t)ẼT

i (t)Pi(t)ξ(t)
)

− υif̃
T
i (t)f̃i(t)− βi

� 2
max

�T(t)�(t)

= [ξT(t) f̃ T
i (t) �T(t)

]

×
⎡

⎢
⎣

�i(t) Pi(t) Pi(t)Ẽi(t)
Pi(t) −υiI 0

ẼT
i (t)Pi(t) 0 − βi

� 2
max

I

⎤

⎥
⎦

⎡

⎣
ξ(t)
f̃i(t)
�(t)

⎤

⎦

< 0 (A.2)

where �i(t) is defined by (20). By (8) with υi > 0, i ∈ S, it
always follows that:

υi

(
α2

i ξ
T(t)F̃T

i F̃iξ(t)− f̃ T
i (t)f̃i(t)

)
≥ 0 (A.3)

which indicates that

D+Vi(t)+ βiVi(t)− βi

� 2
max

�T(t)�(t) < 0. (A.4)

Considering the bounded disturbance �(t) satisfying (13)
and (A.4), one obtains

D+Vi(t)+ βiVi(t) <
βi

� 2
max

�T(t)�(t) ≤ βi (A.5)

for t ∈ [lTp + ti−1, lTp + ti). By integrating (A.5) over [lTp +
ti−1, t], one has

V(t) ≤ V
(
lTp + ti−1

)
e−βi(t−(lTp+ti−1))

+
∫ t

lTp+ti−1

βie
−βi(t−τ)dτ
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= V
(
lTp + ti−1

)
e−βi(t−(lTp+ti−1))

+ βi

(
1

βi
− 1

βi
e−βi(t−(lTp+ti−1))

)

= 1 + (V(lTp + ti−1
)− 1

)
e−βi(t−(lTp+ti−1)). (A.6)

For the augmented system (7) under zero initial conditions,
V(t0) = V(0) = 0 ≤ 1. Based on (A.6) and βi > 0, for
t ∈ [t0, t1), one has V(t) ≤ 1 + (V(0)− 1)e−β1t ≤ 1. Since the
continuous state ξ(t) and matrix function P(t) guarantee the
continuity of V(t), one has V(Tp) ≤ 1, hence

V(t) ≤ 1 + (V(Tp
)− 1

)
e−β1t ≤ 1, t ∈ [Tp,Tp + t1

)
. (A.7)

By induction, it follows that V(lTp + ti−1) ≤ 1. For t ∈ [lTp +
ti−1, lTp + ti), inequality

V(t) ≤ 1 + (V(lTp + ti−1
)− 1

)
e−βi(t−(lTp+ti−1)) ≤ 1 (A.8)

holds for all i ∈ S. Hence, the augmented state ξ(t) will not
escape from the bounding region E (P(t)). According to Schur
complement equivalence, condition (18) implies that for t ∈
[lTp + ti−1, lTp + ti), j = 1, 2, . . . , nu, one has

uT
j (t)uj(t) = ξT(t)K̃T

ij(t)K̃ij(t)ξ(t)

≤ ξT(t)Pi(t)ξ(t) ≤ 1 (A.9)

which is applicable for all the actuators. Therefore, it can be
concluded that for t ≥ 0, the control input satisfies ‖u(t)‖ ≤ 1
such that SAT(u(t)) = u(t). In other words, an estimate of
reachable set R ξ for augmented system (7) can be given via
E (P(t)), which prevents u(t) from being saturated for all t ≥
0. The proof is complete.

REFERENCES

[1] S. Bittanti and P. Colaneri, Periodic Systems: Filtering and Control.
London, U.K.: Springer, 2008.

[2] X. Zhao, H. Yang, and G. Zong, “Adaptive neural hierarchical sliding
mode control of nonstrict-feedback nonlinear systems and an application
to electronic circuits,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47,
no. 7, pp. 1394–1404, Jul. 2017.

[3] E. Aranda-Escolástico, C. Rodríguez, M. Guinaldo, J. L. Guzmán,
and S. Dormido, “Asynchronous periodic event-triggered control with
dynamical controllers,” J. Frankl. Inst., vol. 355, no. 8, pp. 3455–3469,
2018.

[4] M. S. Allen, M. W. Sracic, S. Chauhan, and M. H. Hansen, “Output-only
modal analysis of linear time-periodic systems with application to wind
turbine simulation data,” Mech. Syst. Signal Process., vol. 25, no. 4,
pp. 1174–1191, 2011.

[5] D. Ding, Z. Wang, Q.-L. Han, and G. Wei, “Neural-network-based
output-feedback control under round-robin scheduling protocols,” IEEE
Trans. Cybern., vol. 49, no. 6, pp. 2372–2384, Jun. 2019.

[6] J. Jiao, S. Cai, and L. Li, “Dynamics of a periodic switched predator–
prey system with impulsive harvesting and hibernation of prey popula-
tion,” J. Frankl. Inst., vol. 353, no. 15, pp. 3818–3834, Oct. 2016.

[7] B. Zhou and G.-R. Duan, “Periodic Lyapunov equation based
approaches to the stabilization of continuous-time periodic linear
systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2139–2146,
Aug. 2012.

[8] J. Zhou, “Classification and characteristics of Floquet factorisations in
linear continuous-time periodic systems,” Int. J. Control, vol. 81, no. 11,
pp. 1682–1698, 2008.

[9] T. J. Selstad and K. Farhang, “On efficient computation of the steady-
state response of linear systems with periodic coefficients,” J. Vib.
Acoust., vol. 118, no. 3, pp. 522–526, 1996.

[10] X. Zhao, S. Yin, H. Li, and B. Niu, “Switching stabilization for a class
of slowly switched systems,” IEEE Trans. Autom. Control, vol. 60, no. 1,
pp. 221–226, Jan. 2014.

[11] X. Zhao, P. Shi, Y. Yin, and S. K. Nguang, “New results on stability of
slowly switched systems: A multiple discontinuous Lyapunov function
approach,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3502–3509,
Jul. 2017.

[12] W. Xiang, “Necessary and sufficient condition for stability of switched
uncertain linear systems under dwell-time constraint,” IEEE Trans.
Autom. Control, vol. 61, no. 11, pp. 3619–3624, Nov. 2016.

[13] W. Xiang, H.-D. Tran, and T. T. Johnson, “Nonconservative lifted convex
conditions for stability of discrete-time switched systems under mini-
mum dwell-time constraint,” IEEE Trans. Autom. Control, vol. 64, no. 8,
pp. 3407–3414, Aug. 2019.

[14] P. Li, J. Lam, and K. C. Cheung, “Stability, stabilization and L2-gain
analysis of periodic piecewise linear systems,” Automatica, vol. 61,
pp. 218–226, Nov. 2015.

[15] J. Zhou and H. M. Qian, “Pointwise frequency responses framework for
stability analysis in periodically time-varying systems,” Int. J. Syst. Sci.,
vol. 48, no. 4, pp. 715–728, 2017.

[16] E. Fridman and J. Zhang, “Averaging of linear systems with almost peri-
odic coefficients: A time-delay approach,” Automatica, vol. 122, Dec.
2020, Art. no. 109287.

[17] P. Li, J. Lam, and K. C. Cheung, “H∞ control of periodic piecewise
vibration systems with actuator saturation,” J. Vib. Control, vol. 23,
no. 20, pp. 3377–3391, 2017.

[18] X. Xie, J. Lam, and C. Fan, “Robust time-weighted guaranteed cost
control of uncertain periodic piecewise linear systems,” Inf. Sci.,
vols. 460–461, pp. 238–253, Sep. 2018.

[19] C. Fan, J. Lam, and X. Xie, “Peak-to-peak filtering for periodic
piecewise linear polytopic systems,” Int. J. Syst. Sci., vol. 49, no. 9,
pp. 1997–2011, 2018.

[20] B. Zhu, J. Lam, and X. Song, “Stability and L1-gain analysis of
linear periodic piecewise positive systems,” Automatica, vol. 101,
pp. 232–240, Mar. 2019.

[21] X. Xie and J. Lam, “Guaranteed cost control of periodic piecewise linear
time-delay systems,” Automatica, vol. 94, pp. 274–282, Aug. 2018.

[22] X. Xie, J. Lam, and P. Li, “H∞ control problem of linear periodic piece-
wise time-delay systems,” Int. J. Syst. Sci., vol. 49, no. 5, pp. 997–1011,
2018.

[23] R. Sakthivel, T. Satheesh, S. Harshavarthini, and D. J. Almakhles,
“Design of resilient reliable control for uncertain periodic piecewise
systems with time-varying delay and disturbances,” J. Frankl. Inst.,
vol. 357, no. 17, pp. 12326–12345, 2020.

[24] Z. Ai and L. Peng, “Exponential stabilisation of impulsive switched
linear systems via a periodic switching scheme,” IET Control Theory
Appl., vol. 11, no. 16, pp. 2921–2926, 2017.

[25] P. Li, J. Lam, K.-W. Kwok, and R. Lu, “Stability and stabilization
of periodic piecewise linear systems: A matrix polynomial approach,”
Automatica, vol. 94, pp. 1–8, Aug. 2018.

[26] P. Li, J. Lam, R. Lu, and K.-W. Kwok, “Stability and L2 synthesis of a
class of periodic piecewise time-varying systems,” IEEE Trans. Autom.
Control, vol. 64, no. 8, pp. 3378–3384, Aug. 2019.

[27] X. Xie, J. Lam, and K.-W. Kwok, “A novel scheme of nonfragile con-
troller design for periodic piecewise LTV systems,” IEEE Trans. Ind.
Electron., vol. 67, no. 12, pp. 10766–10775, Dec. 2020.

[28] X. Xie, J. Lam, and P. Li, “A novel H∞ tracking control scheme for
periodic piecewise time-varying systems,” Inf. Sci., vol. 484, pp. 71–83,
May 2019.

[29] H. Li, L. Bai, L. Wang, Q. Zhou, and H. Wang, “Adaptive neural control
of uncertain nonstrict-feedback stochastic nonlinear systems with output
constraint and unknown dead zone,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 8, pp. 2048–2059, Aug. 2017.

[30] X. Yang, B. Zhou, F. Mazenc, and J. Lam, “Global stabilization
of discrete-time linear systems subject to input saturation and time
delay,” IEEE Trans. Autom. Control, early access, Apr. 23, 2020,
doi: 10.1109/TAC.2020.2989791.

[31] X. Lin, S. Huang, S. Li, and Y. Zou, “Finite-time stabilisation of
switched linear input-delay systems via saturating actuators,” IET
Control Theory Appl., vol. 12, no. 15, pp. 2127–2137, 2018.

[32] H. Li, L. Bai, Q. Zhou, R. Lu, and L. Wang, “Adaptive fuzzy control of
stochastic nonstrict-feedback nonlinear systems with input saturation,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2185–2197,
Aug. 2017.

[33] H. Wu, “Simple adaptive robust output tracking control schemes of
uncertain parametric strict-feedback non-linear systems with unknown
input saturations,” IET Control Theory Appl., vol. 12, no. 12,
pp. 1694–1703, 2018.

[34] X. Xie, J. Lam, and P. Li, “Finite-time H∞ control of periodic piecewise
linear systems,” Int. J. Syst. Sci., vol. 48, no. 11, pp. 2333–2344, 2017.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 25,2021 at 10:14:59 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TAC.2020.2989791


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: ENERGY-TO-PEAK OUTPUT TRACKING CONTROL OF ACTUATOR SATURATED PERIODIC PIECEWISE TIME-VARYING SYSTEMS 13

[35] Y. Chen, J. Lam, and B. Zhang, “Estimation and synthesis of reachable
set for switched linear systems,” Automatica, vol. 63, pp. 122–132, Jan.
2016.

[36] P. Li, P. Li, Y. Liu, H. Bao, and R. Lu, “H∞ control of periodic piecewise
polynomial time-varying systems with polynomial Lyapunov function,”
J. Frankl. Inst., vol. 356, no. 13, pp. 6968–6988, 2019.

[37] T. Hu and Z. Lin, Control Systems with Actuator Saturation: Analysis
and Design. New York, NY, USA: Springer, 2001.

Xiaochen Xie (Member, IEEE) received the B.E.
degree in automation and the M.E. degree in control
science and engineering from the Harbin Institute
of Technology, Harbin, China, in 2012 and 2014,
respectively, and the Ph.D. degree in control engi-
neering from the University of Hong Kong, Hong
Kong, in 2018.

She is currently a Postdoctoral Fellow with the
Department of Mechanical Engineering, University
of Hong Kong. Her research interests include robust
control and filtering, periodic systems, switched

systems, intelligent systems, and process monitoring.
Dr. Xie received the Hong Kong Ph.D. Fellowship in 2014, which supported

her doctoral study and academic exchanges.

James Lam (Fellow, IEEE) received the B.Sc.
degree (First Hons.) in mechanical engineering from
the University of Manchester, Manchester, U.K.,
in 1983, and the M.Phil. degree in control engi-
neering and operational research and the Ph.D.
degree in control engineering from the University
of Cambridge, Cambridge, U.K., in 1985 and 1988,
respectively.

Prior to joining the University of Hong Kong in
1993, where he is currently a Chair Professor of
Control Engineering, he was a Lecturer with the the

City University of Hong Kong, Hong Kong, and the University of Melbourne,
Melbourne, VIC, Australia. His research interests include model reduction,
robust synthesis, delay, singular systems, stochastic systems, multidimensional
systems, positive systems, networked control systems, and vibration control.

Prof. Lam was awarded the Ashbury Scholarship, the A.H. Gibson Prize,
and the H. Wright Baker Prize for his academic performance from the
University of Manchester. He is a Highly Cited Researcher in Engineering
in 2014–2020 and Computer Science in 2015. He is the Editor-in-Chief of
IET Control Theory and Applications and Journal of the Franklin Institute,
a Subject Editor of Journal of Sound and Vibration, an Editor of Asian
Journal of Control, a Senior Editor of Cogent Engineering, an Associate Editor
of Automatica, International Journal of Systems Science, Multidimensional
Systems and Signal Processing, and Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering.
He is a member of the IFAC Technical Committee on Networked Systems,
and Engineering Panel (Joint Research Schemes), Research Grant Council, and
HKSAR. He is a Chartered Mathematician, a Chartered Scientist, a Chartered
Engineer, and a Fellow of the Institute of Electrical and Electronic Engineers,
the Institution of Engineering and Technology, the Institute of Mathematics
and Its Applications, and the Institution of Mechanical Engineers. He is a
Croucher Scholar, a Croucher Fellow, and a Distinguished Visiting Fellow of
the Royal Academy of Engineering.

Chenchen Fan (Student Member, IEEE) received
the B.E. degree in automation and the M.E.
degree in control science and engineering from
the Harbin Institute of Technology, Harbin, China,
in 2014 and 2016, respectively. She is cur-
rently pursuing the Ph.D. degree in control engi-
neering with the University of Hong Kong,
Hong Kong.

Her research interests include robust control
and filtering, reachable set, periodic systems, and
switched systems.

Ms. Fan received the Hong Kong Ph.D. Fellowship in 2016, which
supported her doctoral study and academic exchanges.

Xiaomei Wang (Member, IEEE) received the B.E.
degree in automation from the Harbin Institute
of Technology, Harbin, China, in 2014, the M.E.
degree in control science and engineering from
the Shenzhen Graduate School, Harbin Institute of
Technology, Shenzhen, China, in 2016, and the
Ph.D. degree in robotics from the University of Hong
Kong, Hong Kong, in 2020.

She is currently a Postdoctoral Fellow with the
Department of Mechanical Engineering, University
of Hong Kong. Her research interests include

learning-based robotic control, surgical robotics, and continuum robotic
control.

Ka-Wai Kwok (Senior Member, IEEE) received
the B.Eng. and M.Phil. degrees in automa-
tion and computer-aided engineering from the
Chinese University of Hong Kong, Hong Kong,
in 2003 and 2005, respectively, and the Ph.D.
degree in computing from the Hamlyn Center
for Robotic Surgery, Department of Computing,
Imperial College London, London, U.K., in 2012.

He is currently an Associate Professor with the
Department of Mechanical Engineering, University
of Hong Kong (HKU), Hong Kong. Prior to joining

HKU in 2014, he worked as a Postdoctoral Fellow with Imperial College
London in 2012 for surgical robotics research. In 2013, he was awarded
the Croucher Foundation Fellowship, which supported his research jointly
supervised by advisors from the University of Georgia, Athens, GA, USA,
and Brigham and Women’s Hospital—Harvard Medical School, Boston, MA,
USA. He has involved in various designs of surgical robotic devices and
interfaces for endoscopy, laparoscopy, stereotactic, and intracardiac catheter
interventions. He has coauthored with over 40 clinical fellows and over
80 engineering scientists. His research interests focus on surgical robotics,
intraoperative medical image processing, and their uses of high-performance
computing techniques.

Dr. Kwok’s multidisciplinary work has been recognized by various inter-
national conference/journal paper awards, e.g., the Best Conference Paper
Award of ICRA 2018, which is the largest conference ranked top in the field of
robotics, as well as TPEL 2018, RCAR 2017, ICRA 2019, ICRA 2017, ICRA
2014, IROS 2013 and FCCM 2011, Hamlyn 2012 and 2008, and Surgical
Robot Challenge 2016. He also became a recipient of the Early Career Awards
in 2015 to 2016 offered by Research Grants Council of Hong Kong. He serves
as an Associate Editor for IROS 2017–2020, ICRA 2019–2021, IEEE Robotics
and Automation Magazine, and Annals of Biomedical Engineering. He is
the principal investigator of Group for Interventional Robotic and Imaging
Systems, HKU.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 25,2021 at 10:14:59 UTC from IEEE Xplore.  Restrictions apply. 


