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Abstract—This article addresses the distributed consensus
problem for identical continuous-time positive linear systems with
state-feedback control. Existing works of such a problem mainly
focus on the case where the networked communication topologies
are of either undirected and incomplete graphs or strongly
connected directed graphs. On the other hand, in this work,
the communication topologies of the networked system are
described by directed graphs each containing a spanning tree,
which is a more general and new scenario due to the inter-
play between the eigenvalues of the Laplacian matrix and
the controller gains. Specifically, the problem involves complex
eigenvalues, the Hurwitzness of complex matrices, and positivity
constraints, which make analysis difficult in the Laplacian matrix.
First, a necessary and sufficient condition for the consensus
analysis of directed networked systems with positivity constraints
is given, by using positive systems theory and graph theory.
Unlike the general Riccati design methods that involve solving
an algebraic Riccati equation (ARE), a condition represented
by an algebraic Riccati inequality (ARI) is obtained for the
existence of a solution. Subsequently, an equivalent condition,
which corresponds to the consensus design condition, is derived,
and a semidefinite programming algorithm is developed. It is
shown that, when a protocol is solved by the algorithm for the
networked system on a specific communication graph, there exists
a set of graphs such that the positive consensus problem can be
solved as well.

Index Terms— Algebraic Riccati inequality (ARI), directed
graphs, networked systems, positive consensus, positive systems.
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NOMENCLATURE
R Set of real numbers.
C  Set of complex numbers.

R m x n matrix with real elements.
cmxr m x n matrix with complex elements.
X >Y  Real matrix X — Y is positive definite.

1 Identity matrix with appropriate dimension.

A® B Kronecker product of matrices A and B.
[A];; ith row and the jth column element of A.
A>B Matrix A — B > 0.

A>B Matrix A — B > 0.

A eM" Matrix A € R"™" is Metzler.

1, (1, 1,...,1]T e R™.

0, [0,0,...,0]T e R™.

Re(4) Real part of 1 € C.

A* Hermitian transpose of matrix A € C"*",
w(A) Spectral abscissa of matrix A.

T Transpose operation of matrix.

v Set of nodes: {v{, v2,...,0n}.
& Subset of ¥ x V.

% Graph: (¥, &).
N

; Neighbor set of agent i: {v; € ¥ : (vj,v;) € &}.

I. INTRODUCTION

ECENT years have witnessed an increasing interest in

cooperative control for networked systems, due to its
enormous amounts of potential applications in electric power
systems, unmanned mobile robots, intelligent transportation
systems, and distributed sensor networks [1]. Cooperative
control in networked systems for accomplishing designated
missions usually has several different topics, including flock-
ing [2], formation [3], and consensus/synchronization [4], [5].
To achieve the effective cooperative control of networked
systems, the consensus issue is a fundamental challenge. The
object of consensus is to reach an agreement of interest for
all the agents by designing some distributed control protocols,
which has been extensively studied recently [6]-[9]. In [6],
the consensus problem for networked systems with switching
topologies has been investigated by proposing a common
quadratic Lyapunov function. By using the high-gain observer
design approach, the observer-based coordinated control was
achieved for the networked systems with input saturation [7].
In [8], the problem of average consensus has been investigated
for time-varying directed networks of multiagent systems with
limited bandwidth communication. In [9], consensus control
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for multiagent systems with a distributed event-triggered state-
feedback protocol has been studied. Then, the consensus issue
has been analyzed in the presence of denial-of-service attacks
by event/self-triggered communication schemes in [10]. When
a networked system has multiple leaders, a containment con-
trol problem arises, which means a set of agents arrive at
the convex hull formed by the leaders. In [11], necessary and
sufficient conditions have been proposed for the containment
control of high-order multiagent systems by observer-type
protocols. For more reports with regard to consensus of
networked systems, one may refer to [3], [12]-[15].

The consensus of networked systems with positivity con-
straints, called positive consensus, is a new and challenging
issue raised recently in the field of research [16], [17]. In pos-
itive consensus, the agents are described by a special kind
of systems called positive systems [18]. Positive systems are
systems whose describing variables can only take positive or at
least nonnegative values. Since a lot of natural phenomena and
engineering processes can be modeled by means of positive
systems [19], [20], many problems of this topic have been
extensively studied in recent years for single-positive systems
[21]-[25] and multiple-positive systems connected in various
forms [26]—[28]. In [26], necessary and sufficient synchroniza-
tion conditions have been proposed for the nonnegative edge
synchronization of networked systems on undirected graphs
based on neighbors’ output information. Then, via output
feedback protocols, sufficient conditions have been given for
the positive consensus of uncertain networked systems without
utilizing the information of algebraic connectivity in [27].
Recently, the ¢;-gain performance analysis and distributed
finite-time filter design have been investigated for positive
systems over a sensor network on undirected graphs [28],
where each sensor shared its measurement with its neighbor-
ing sensors possibly subject to random communication link
failure and deception attacks. Though the positive consensus
problem (PCP) for networked systems has been studied in
the case where agents communicate with each other by either
undirected [16], [28] and connected graphs [29] or strongly
connected directed graphs [30], much work still needs to be
done to provide a clearer picture of such a problem.

Differently from the existing works [16], [30], this article
investigates the PCP in a more general setting that the
agents of networked systems communicate with each other via
directed graphs each containing a spanning tree. Notice that
connected undirected graphs or strongly connected directed
graphs are special cases of directed graphs containing a
spanning tree. However, this fact leads to quite a different
situation where the problem involves complex eigenvalues of
the Laplacian matrix, the Hurwitzness of complex matrices,
and positivity constraints. Due to a couple of tricky issues that
have to be tackled, one cannot straightforwardly generalize the
existing approaches to solve this problem, which has motivated
our work. The main results and contributions of this work can
be summarized as follows.

1) Necessary and/or sufficient conditions of positive con-
sensus analysis and design are derived, and an effective
semidefinite programming algorithm is developed for the
solution.
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2) Compared with the existing works where the agents
communicate with each other by either undirected and
connected graphs (only for single-input agents) [16], (for
multi-input agents) [29], or strongly connected directed
graphs [30], PCP has been extended to the case where
the agents communicate with each other via directed
graphs containing a spanning tree. Therefore, the above
previous results become very special cases of our results
(this will be shown clearly via an illustrative example in
the simulation).

3) Another advantage over the existing works in [17], [30],
and [31] is that the protocol solved by our algorithm is
robust to the graph topology, and positive consensus can
be achieved for a set of graphs.

The rest of this article is structured as follows. Some pre-
liminary knowledge is reviewed in Section II. The main results
of PCP, including positive consensus analysis and design
conditions, as well as a semidefinite programming algorithm,
are given in Section III. In Section IV, numerical examples
with comparative results are provided. Finally, the conclusion
is drawn in Section V.

II. PRELIMINARIES

A directed edge from i to j is denoted as an ordered pair (v;,
vj) € &, which means the child node j can directly receive
information from the parent node i. An adjacency matrix of
graph & with order N is an N x N matrix %/ defined as a;; > 0
if (vj,v;) € &, but 0 otherwise. a;; is the weight for edge (v},
v;) € &, and it is set equal to 1 if the weights of graph are
irrelevant. Assume that there are no repeated edges and no
self-loops, that is, a;; = 0 Vi € . with & = {1,2,..., N}.
The Laplacian matrix L of graph ¢ of order N is an N X
N matrix defined as [L];; = Zu,e/% a;jj and [L];; = —a;j
for any i # j. A sequence of successive edges in the form
{(i, v&), 0k, 1), ..., (bm,v})} is a directed path from node i
to node j.

IIT. MAIN RESULTS

A directed graph is said to contain a spanning tree if there
is a node called the root such that there is a directed path from
the root to any other nodes in the graph. For directed graphs,
there are some important results [31], [32]: O is an eigenvalue
of Laplacian matrix L with its right eigenvector 1y, and all
nonzero eigenvalues have positive real parts. Furthermore, 0
is a simple eigenvalue of Laplacian matrix L if and only if
graph ¢ contains a spanning tree.

Consider N agents, distributed on a directed graph ¢, with
identical continuous-time positive linear dynamics as

)'Ci(l‘) = A)Ci([) + Bui(t), i d (1)

where x;(t) = [xi1, Xi2,...,Xir]1 € R’ is the state and
u;(t) € R™ is the control input. System (1) is a multi-
input positive linear system of any orders, and there is no
stability assumption. Intuitively, it is said to be a continuous-
time positive linear system if its state is nonnegative for
any nonnegative initial state and nonnegative input [18]-[20].
Since (1) is a positive linear system, A € R™" is a Metzler
matrix, and B € R"™*" is a nonnegative matrix. This is because
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matrix A is Metzler and matrix B is nonnegative is a necessary
and sufficient condition guaranteeing (1) to be positive [18]-
[20]. Throughout this article, it is assumed that (A, B) is
stabilizable. Consider the distributed state-feedback control
protocol [33]

ui(t):K z aij(xj(t)—xi(t)), i€?. 2)

UjE:/V,‘

Also, define
x(t) = [xlT(t), sz(t), ey x,{,(t)]T.
Then, the overall closed-loop system is represented by
x(t) = Ax(t) 3)

where A =1, ® A — (L ® BK). In this article, we study the
consensus problem of positive networked systems on directed
graphs containing a spanning tree, which is defined as follows:

PCP: For any nonnegative initial value, find a gain matrix
K such that the consensus of the network is achieved, while
their state trajectories remain in the nonnegative orthant.

For PCP, it is assumed that the communication topology
of networked system is represented by a directed graph ¢
containing a spanning tree. Then, the eigenvalues of L are,
in general, complex numbers [31], which can be denoted by
Ai, Vi € 7 and ordered as 0 = A} < Re(42) < --- < Re(4y).
Following a similar line in [16], we are investigating the
positive consensus of networked systems on directed graphs.
For ease of illustration, define [, := max([L];;), Vi € .Z.
By expanding A, we have

A
. -
A=Y a;BK  anBK ainBK
j=1
n
ay BK A=Y @m;BK ...  ayBK
= j=1

aNlBK aNzBK

N
... A— Z aNjBK
j=1 .
4)
It is obvious that system (3) is positive if and only if A
is Metzler [18]-[20]. By observing (4), it follows that A is
Metzler if and only if A — [,xBK is Metlzer and BK > 0
since a;; = 0 Vi,j € .#, which gives that BK > 0 and
A — Inax BK is Metzler. It is well known that the system can
reach consensus if and only if A; := A — 1;BK, i € Z\{l1},
are Hurwitz [33], [34]. The discussion has led to the following
positive consensus analysis condition for PCP.

Proposition 1: For a directed graph containing a spanning
tree with 1;, i € .#, as the eigenvalues of its Laplacian matrix,
PCP is solvable by the given K if and only if the following
conditions hold.

1) BK > 0.

2) A —IlnxBK is Metzler.

3) A—4;BK,i e #\{1}, are Hurwitz.

Remark 1: The positive consensus analysis of single-input
networked systems on an undirected and incomplete graph
has been given in [16] where condition 3), i.e., A — 1;BK,
i € Z\{1}, are Hurwitz, involves real eigenvalues, which helps
to derive some nice analytical results for consensus design.
However, since, in the case of directed graphs, condition 3)
involves, in general, complex eigenvalues, that is, 4;, i €
Z\{1}, may be complex, the consensus design results in [16]
cannot be straightforwardly extended, and hence, the positive
consensus design problem becomes more challenging. Notice
that it does not involve complex eigenvalues in the results of
[30] either.

Due to the infinite gain margin robustness property, the Ric-
cati design method has been used for cooperative tracking
control (leader—follower consensus) design of networked lin-
ear systems on strongly connected directed graphs [35] and
directed graphs containing a spanning tree [36], respectively.
It has some advantages for cooperative tracking control design,
including [34]: 1) the decoupling from feedback controller
design with the details of the graph topology and 2) the
robustness to the graph topology. In this article, the idea of
the Riccati design method is also used to solve the PCP.
Different from the general Riccati design method that involves
solving an ARE, our results require solving an algebraic
Riccati inequality (ARI) since this equivalent form can provide
some flexibility for parameterizing the controller gain. Also,
some special properties regarding the Riccati design method
still hold in our results that are given as follows.

Theorem 1: For a directed graph containing a spanning tree
with 4;, i € #, as the eigenvalues of its Laplacian matrix,
PCP is solvable if there exist real matrices P > 0 and S > 0
such that the following conditions hold.

1) BSBTP > 0.
2) A — Il BSBTP is Metzler.
3) ATP+ PA —2Re(1,)PBSBTP < 0.

Under the conditions, K = SBTP.
Proof: Letting K = R™'BTP = SBTP with § = R~ >
0 and P > 0, conditions 1) and 2) are equivalent to those in
Proposition 1. Notice that condition 3), i.e., ATP + PA —
2Re(/12)PBSBTP < 0, is equivalent to that there exists
a real matrix Q > 0 such that an ARE: ATP + PA —
2Re(/,)PBSBTP+Q = ATP+PA—2Re(J,)PBR™'BTP+
O = 0 holds with a unique solution P > 0. Then, straight-
forward computation gives the Lyapunov equation ®(4;) :=
(A — A;BK)*P + P(A — J;BK) = ATP + PA — 2Re(/;)
PB R7'BTP, i € #\{1}. We have ®(1,) = ATP + PA —
2Re(Z)PBR™! BTP = ATP + PA — 2Re(1,)PBSB™P =
—Q < 0. Since 0 = 4; < Re(dy) = < Re(4,),
we have ®(1;) = ATP + PA — 2Re(4;)PBR™'B™P =
ATP + PA — 2Re(1,)PBR™'BTP — 2(Re(4;) — Re(1y))
PBR™'BTP —0Q — 2(Re(4;) — Re(12)KTRK < 0,
i € #\{1}. By the Lyapunov theory [37], we have that
A — };BK, i € #\{l1}, are Hurwitz if ARI: condition 3)
ATP + PA — 2Re(J2)PBSBTP < 0 holds. The proof is
completed. 0
Remark 2: 1t is worth pointing output that there exist P >
0, R > 0, and Q > 0 such that the algebraic Riccati equation

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 25,2021 at 10:04:39 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

(ARE) ATP + PA —2Re(A2)PBR™'BTP + Q = 0 holds if
and only if (A, B) is stabilizable via state feedback [34].

The Riccati design for cooperative tracking control requires
solving an ARE with respect to two given real matrices
Q >0and R > 0 (S = R7") and choosing a coupling
gain appropriately [34]. However, such a design framework
cannot assure the positivity of networked systems since Q > 0
and R > 0 are arbitrarily given. A key problem arises: how
to find a pair (P, S) such that the consensus and positivity
of networked systems can be achieved? This motivates us to
present the following theorem for developing an algorithm.

Theorem 2: For a directed graph containing a spanning tree
with 1;,i € .7, as the eigenvalues of its Laplacian matrix, PCP
is solvable if there exist matrices P > 0, S > 0, and X such
that the following conditions hold.

1) BSBTP > 0.

2) A —IlnBSBTP is Metzler.

3) ATP+PA—2Re(/)PBSBTXT —2Re(A2)XBSBTP +

2Re(12)XBSBTXT < 0.
Under the conditions, K = SBTP.

Proof- Since condition 3) ATP + PA -—
2Re(A,)PBSBTXT — 2Re(4,)XBSBTP + 2Re(12)XBS
BTXT = ATP + PA — 2Re(A2)PBSBTP + 2Re(1)(X —
P)BSBT(X — P)T < 0 and (X — P)BSBT(X — P)T > 0,
we have ATP+PA—2Re(1,)PBSBTP < 0 (notice Q > 0 is
implicitly found). This means that condition 3) of Theorem 2
leads to condition 3) of Theorem 1.

If condition 3) of Theorem 1, that is, ATP + PA —
2Re(4,)PBSBTP < 0, holds, it is obvious that there exists a
matrix X = P such that ATP + PA — 2Re(1,)PBSBTP +
2Re(4)(X — P)BSBT(X — P)T < 0 holds. It means that
condition 3) of Theorem 1 leads to condition 3) of Theorem 2.
Based on the discussion above, one can see that Theorems 1
and 2 are equivalent. The proof is completed. U

Theorem 2 is an equivalent condition of Theorem 1. To find
a pair (P, S), a heuristic iterative algorithm based on Theo-
rems 1 and 2 is developed in Algorithm PCPDG (PCP with
Directed Graphs).

Algorithm PCPDG:

Step 1: Set k = 1, o = 1, and €® = 0. For a given
S = [, find a matrix P = U~! > 0 such that the
LMIL: UAT 4+ AU — 2Re(4,)BSWBT < 0 holds.

Step 2: Fix X = P® and § = S®, and minimize ¢?
with respect to P > 0

BSBTP =0
st.1 A —l,BSBTP e M’
I['(P,X,S) <e®J

where the matrix function I'(P, X, §) is defined as
I'(P,X,S) = ATP + PA — 2Re(1,)PBSBTXT—
2Re(/,)XB SBTP +2Re(1,)XBSBTXT.

Step 3: If €® < 0, a controller is obtained as K =
SBTP. STOP. otherwise, go to next step.

Step 4: If | —e®~D|/e® < @, where @ is a prescribed
tolerance, then this algorithm fails to find the desired
solution. STOP. otherwise, set k = k+ 1, v =0 + 1,
update P® as P® = P, and then go to next step.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Step 5: Fix P = P®, and minimize ¢® with respect
toS>0

BSBTP =0
$.t.3 A —lnax BSBTP € M
Q(P,S) <1

where the matrix function Q(P, S) is defined as
Q(P,S):= ATP + PA— 2Re(),)PBSBTP.

Step 6: If €® < 0, a controller is obtained as K =
SBTP. STOP. otherwise, go to next step.

Step 7: If [¢®) —e®~D|/e® < @, where 0 is a prescribed
tolerance, then this algorithm fails to find the desired
solution. STOP. otherwise, update S ®) a5 §® = g set
v =0 + 1, and then go to Step 2.

Remark 3: Notice that T'(P, X, S§) = Q(P, 9)
+2Re(12)(X — P)BSBT(X — P)T. For T (P&, p®) k)
< G(U)I, Q(P(k-k—l), S(k+l)) < G(U-H)I, F(P(k+2), P(k+l), and
S(k+1)) < E(v+2)1’ we have #(F(P(k+2)’ P(kJrl)’ S(k+1))) <
#(Q(P(kJrl)’ S(k+1))) < #(F(P(kﬂ)’ P(k), S(k))), and E(D+2) <
€D < €® Vi, v > 1. It means that Algorithm PCPDG
generates a sequence of matrices {P®, SO} _ such that
{€®}?_, decreases monotonically. When € decreases to a
nonpositive number, a feasible solution {P, S} is obtained.
The tolerance 8 is usually a sufficiently small positive number
used as the stopping criterion of the algorithm. Based on
the experience of simulation, it could be chosen between
I xe™ and 1 x e7>. Algorithm PCPDG belongs to the type
of sequential semidefinite programming algorithms, which
appears in many synthesis problems in the field of control.

Using the concept of consensus region [32], [36], one can
evaluate the performance of consensus control protocols to
show how consensusability depends on structural parameters
of the communication graphs.

Definition 1: The consensus region of a given protocol (2)
is a complex region: S £ {s € C | A — sBK is Hurwitz}.

It is shown that, for protocol (2) with the Riccati design
control gain, the consensus region is unbounded [36]. Accord-
ing to [36], in our approach, an unbounded consensus region
is S ={a+pi|ac[Re(ly),+00), f € (—o0, +00)} for
a given communication graph ¢ with A, = 1,. However, for
positive networked systems, the consensusability and positivity
are two important properties that should be concerned. Based
on Proposition 1 and Definition 1, the positive consensus can
be achieved if 4; € S, i € #\{1}, and A is Metzler. Then,
one can directly obtain the following proposition.

Proposition 2: For a given communication graph ¢ with
Imax = Imax, a controller K is obtained by Algorithm PCPDG,
and then, PCP is also solvable for agents on a set of graphs:
G2 €S, ie \{1}, Inax =< Imax}-

It can be proved by following the lines of the analysis in
Proposition 1 and the proof in Theorem 1.

Remark 4: In our work, as the positive system is consid-
ered, one has to investigate the positivity and Hurwitzness
issues at the same time. The “positive consensus region” in
this article consists of two parts: the Metzler region and the
Hurwitz region. The Metzler region is used to analyze the pos-
itivity of multiagent systems, and the Hurwitz region is used to
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0.2 directed multi-input agents are considered in [16], [29], and
[30], respectively. Consider the positive networked system in
018 ‘h o i (1) with four identical positive linear systems whose dynamics
016 | } i is represented by
0.14 017 4/\ } .
015 o —p= -1 1 0
012 015 . A= 0 1 1 |, B=|2
& o1 0.14 | 0 2 -28 1
01 0 6s 068
0.08 1 Since connected undirected graphs are special cases of directed
008 | graphs, our approach can also be used to solve PCP with
' undirected graphs. In this example, the agents communicate
0.04 . with each other via an undirected graph with the following
Laplacian matrix:
0.02 .
% 01 02 03 04 05 08 07 08 ! o -1 0
ko I = 0 1 -1 0
-1 -1 3 -1
Fig. 1. Metzler and Hurwitz regions of A, and As. 0 0 —1 1
0.2 where [,.x = 3 and the eigenvalues are 1, =0, 4, = A3 =1,
ol | and 14 = 4. Define K := [ki, k2, k3] € R"™3. Since the
agents are single-input positive systems, the controller gain is
016 1 required to be nonnegative due to condition 1) in Theorem 1.
o1l | Then, condition 2) in Theorem 1 requires that A — /;,,x BK is
' Metzler implying Kpnin < K < Kpax, Where Kpin = [0 0 0]
012 1 and Knax = [0 2/3 1/6]. The feasible solution regions of
- matrices Ay, A3 and A4 are shown in Figs. 1 and 2 where the
= 01 | Metzler regions are highlighted in light gray and the Hurwitz
008 , regions are expressed in medium gray. Notice that the Metzler
and Hurwitz regions of A, Az, and A4 have some overlapping
0.06 ] parts highlighted in dark gray such that they are Metzler—
0.08 i Hurwitz. Unfortunately, it is found that their Metzler—Hurwitz
regions (that is, the dark gray color regions in Figs. 1 and
0.02 1 2) are separated. In other words, one cannot find a K such
o ‘ ‘ that A,, Az, and A4 are all Metzler—Hurwitz. Due to this
0 0.1 0.2 03 04 05 08 07 08  fact, the approaches proposed in [16] cannot solve PCP since
kQ they require A,, Az, and A4 are all Metzler—Hurwitz, which
Fig. 2. Metzler and Hurwitz regions of As. is unnecessary in our approach. However, it is known that

study the consensus of agents. Therefore, the consensus region
proposed for general linear systems without considering the
positivity [32], [36] cannot be used to analyze the consensus
problem in our work.

IV. NUMERICAL SIMULATIONS

In order to illustrate the efficacy of the proposed approaches,
simulations on three examples with some comparative results
are presented in this section.

A. Example 1

In this example, we give a comparison of our approach and
those proposed in [17], [30], and [31]. It is worth pointing
out that the undirected single-input agents, the undirected
multi-input agents, and the strongly connected and balanced

the feasible solution region for this problem is actually the
dark gray region shown in Fig. 1 since its solutions satisfy the
conditions in Theorem 1. Though the area of this region is very
small, as shown in the figure, by using Algorithm PCPDG,
a feasible solution is found successfully as

K =10 0.66412 0.16181]

which is shown by the black dot in Fig. 1. Using such a
controller, we have

—1 1 0
Ay=A;=| 0 —0.32824 0.67638 | e M
0 1.3359 —2.9618
—1 1 0
Ay=1 0 —4313  —0.29448 | ¢ M
0 —0.65648 —3.4472
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Fig. 3. Positive electric circuit model.
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Fig. 4. Consensus result of the positive networked system with controller

(7).

whose eigenvalues are {—1, —0.020991, —3.2691} and {—1,
—4.4971, —3.2631}, respectively. Also

[0 0 0
BK = |0 13282 0.32362| >0
|0 0.66412 0.16181
—1 1 0
A—LBK =0 —29847 0.02914 | e M>.
| 0 0.00764 —3.2854

According to Proposition 1, PCP is solved. In addition,
the approach proposed in [29] is also used to solve the
problem, and a feasible solution is obtained as follows:

K =[0 0.66415 0.16391].

Therefore, both the approach proposed in this work and that
in [29] have solved the problem of this example successfully.

B. Example 2

In this example, we compare our approach with those pro-
posed in [17], [30], and [31] again. Consider an electrical net-
work model consisting of multiple positive electrical circuits
[30], as shown in Fig. 3, with seven agents. By Kirchhoff’s

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

voltage law, we have

diy ()
dt

R(i1(t) —iz(t)) = Lo

e(t) =L,

+ R(i1 (1) — (1))

dix (1) )
dr

Choosing i (t) and i>(¢) as the two state variables and e(r) as

the control input yields the system in (1) with the following
system matrices:

kR 1
Ly L, I e

S TR T8 A
L, L,

The values of the parameters are chosen as R} = 1 Q and
Li=L,=1H.

Example 2.1: In [30], the agents communicate through
a strongly connected and balanced directed graph, and the
associated Laplacian matrix is given as follows:

1 0 0 0 0 0 -1

-1 1 0 0 0 0 0

0 -1 1 0 0 0 0
L=[0 0 -1 1 0 0 0
0 0 0 -1 1 0 0

0 0 0 0 -1 1 0

0 0 0 0 0 -1 1

In this case, we have /x = 1 and 4, = 0.3765 — 0.7818;.
It is shown that the problem of such case can be solved by
the approach in [30]. By using Algorithm PCPDG, a feasible
solution is found as

K =[7.6685 0.50579].

Example 2.2: We consider another communication topology
that contains a spanning tree but is not strongly connected and
balanced. The associated Laplacian matrix is given as follows:

2 0 0 0 -1 -1 0]

-1 1 0 0 0 0 0

0 -1 1 0 0 0 0
L=|0 0o -1 1 0 0 0| (6

0 0 0 -1 1 0 0

0 0 0 0 -1 1 0

L0 0 0 0 0 -1 1]

Since it is not strongly connected and balanced, the approach
proposed in [30] does not work for PCP. In this case,
we have /x = 2 and 4, = 0.69098 — 0.95106j. By using
Algorithm PCPDG, a feasible solution is found as

K =1[7.6523 0.25427]. (7

With the controller gain, the consensus result is shown
in Fig. 4. Therefore, our approach has solved the problem
of the two cases successfully, while the approach in [30] fails
to give a solution of the second case. Since the approaches
proposed in [16] and [29] have assumed that the communica-
tion topologies of agents are undirected, they cannot solve the
problem of the two cases.
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Fig. 5. Communication topologies of the three-agent network.

TABLE I
FEATURES OF LAPLACIAN MATRICES

Type A Bi/B, |C|D|E|F G H|I
Number 6 6/3 66|66 2 301
A 0.38197 1 1]2]2]1]15-086603 | 1|3
A3 2.618 1 212 |3]2]1.5+086603j | 3 |3
Imax 2 1 1]2]2]2 1 202

&7 {BI’BZ’C} 3 {G}

{A} = {EH}
{DE} = {1}
Fig. 6. Implication of different protocols for PCP using the features of

different graphs in Fig. 5.

C. Example 3

In this example, we consider a positive networked system
with three multi-input agents, and the system matrices of each
agent are represented as follows:

-3 2 1 1 0
A=118 =2 o |, B=|0 1]
1 0 -05 0 0

If we label the agents with 1-3 and set the weights of
edges to 1, there are 45 communication topologies in total,
which can be divided into ten sets, as shown in Fig. 5. The
features of their Laplacian matrices, including eigenvalues and
Imax, are summarized in Table I. Among them, we can see
that the graphs of Type H and Type I are undirected [16],
which constitute 8.9% of all communication topologies; the
graphs of Type G are strongly connected and balanced directed
[30], which constitute 4.4% of all communication topologies.
Therefore, they are only two very special cases among them.
Notice that the percentage goes down quickly as the number
of agents increases.

According to Proposition 2, the implication of different
protocols for PCP using the features of the graphs in Fig. 5
is shown in Fig. 6. Specifically, choosing the graphs of Type
A as the topology of agents can give a robust protocol by
our algorithm such that PCP is solvable with a set of graphs,
which includes all the graphs in Fig. 5. Choosing the graphs of

. 0
Xi2 0 Xl

Fig. 7. Consensus result of agents on the graph of Type G with controller (8).

Xi2 00 Xi1

Fig. 8. Consensus result of agents on the graph of Type I with controller (8).

Type B1/B,/C can give a protocol such that the solvability of
PCP with the graphs of Type G is guaranteed. The graphs of
Type G are strongly connected, balanced, and directed [30],
which is a small set of all the graphs in Fig. 5. In this example,
we choose the graphs of Type A as the communication
topology of agents. By using Algorithm PCPDG, a feasible
solution is found as

K — 9.8549 0.59498 0.43384 @)
~10.59498  7.8054 0 ’
Using such a controller and for the graphs of Type A, we have
[—6.7643  1.7727 0.8343
A, = | 1.5727 —4.9814 0 e M?
| 1.0000 0 —0.5000
[—28.8001 0.4423 —0.1358
As = 0.2423 —22.4345 0 ¢ M3
| 1.0000 0 —0.5000
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whose eigenvalues are {—7.8498, —4.0396, —0.3563} and
{—28.8121, —22.4177, —0.5048}, respectively. Also

[9.8549  0.5950 0.4338
BK = | 05950 7.8054 0 |>=0
0 0 0
(227098 0.8100  0.1323
A—lnxBK = | 06100 —17.6108 0 |eM.
1.0000 0 —0.5000

According to Proposition 1, PCP is solved. An unbounded
consensus region is S = {a + i | @ € [0.38197, +00), S €
(—00, +00)} for protocol (8). We have verified that the agents
with all the graphs in Fig. 5 using protocol (8) can achieve
positive consensus. Due to the limitation of length, we only
show the consensus results with the graphs of Types G and
I in Figs. 7 and 8, respectively. It is worth pointing out that
protocol (8) can solve PCP for a different number of agents
with different communication topologies if their corresponding
eigenvalues 1; € S, i € #\{1}, and gy < 2.

V. CONCLUSION

This article has addressed the PCP for identical positive
linear systems on directed graphs each containing a spanning
tree. A necessary and sufficient condition of positive consensus
analysis for networked systems has been given. Then, two
positive consensus design conditions have been derived by
employing the Riccati design method. Based on the consensus
design conditions, a semidefinite programming algorithm has
been developed. It has been shown that positive consensus can
be achieved for a set of graphs with the protocol solved by
our algorithm for agents on a specific communication graph.
Simulations on three examples with some comparative results
have been presented to show the superiority of the proposed
approach.

It is worth pointing out that the proposed framework for
designing positive consensus controllers can be straightfor-
wardly generalized to the case where observer-type output-
feedback controllers are used. Furthermore, one can solve the
leader—follower consensus problem or the containment control
problem for positive networked systems by such a framework
as well. Our future works will focus on the positive finite-
time/specified-time consensus problems of positive multiagent
systems [38]-[40].
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