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Abstract—In this article, the non-negative edge consensus
problem is addressed for positive networked systems with undi-
rected graphs using state-feedback protocols. In contrast to
existing results, the major contributions of this work included:
1) significantly improved criteria of consequentiality and non-
negativity, therefore leading to a linear programming approach
and 2) necessary and sufficient criteria giving rise to a semidef-
inite programming approach. Specifically, an improved upper
bound is given for the maximum eigenvalue of the Laplacian
matrix and the (out-) in-degree of the degree matrix, and
an improved consensuability and non-negativevity condition is
obtained. The sufficient condition presented only requires the
number of edges of a nodal network without the connection
topology. Also, with the introduction of slack matrix variables,
two equivalent conditions of consensuability and non-negativevity
are obtained. In the conditions, the system matrices, controller
gain, as well as Lyapunov matrices are separated, which is help-
ful for parameterization. Based on the results, a semidefinite
programming algorithm for the controller is readily developed.
Finally, a comprehensive analytical and numerical comparison of
three illustrative examples is conducted to show that the proposed
results are less conservative than the existing work.

Index Terms—Networked systems, non-negative edge consen-
sus, positive linear system, undirected graphs.

I. INTRODUCTION

ANETWORKED system, which is composed of multiple
subsystems communicating with each other through

some pairwise connections, aims at accomplishing vari-
ous control objects. In recent years, we have witnessed
a widespread interest in cooperative control for networked
systems due to two main observations: 1) a lot of surprising
behaviors or phenomena in nature, for instance, cooperative
transport of food by a group of ants and predator avoidance
of a school of fishes and 2) all kinds of potential and real-life
applications, such as carrying out tasks through some coop-
erative means in the applications of unmanned aerial vehicles
[21] and mobile robots [17]. Most of these results have focused
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on the evolution of the nodes in networked systems and con-
sidered the edges as their connection [4], [5], [13], [34]–[38],
while a few studies focus on the edge dynamics of the com-
plex network since the edges can very often be modeled as
dynamic systems [16], [20], [22]. It is known that the edge
variables of a complex network are non-negative in many sit-
uations. For instance, the data transmission of communication
networks and the vehicle flows of traffic networks are usu-
ally quantified by some non-negative or positive values. These
kinds of networked systems can be modelled as a special type
of system with positive dynamics, that is, the system state
is always non-negative for any non-negative initial state and
non-negative input [10], [14], [15], [18], [19], [29]. Motivated
by these, the non-negative edge consensus problem (NECP)
for continuous-time networked systems was raised and inves-
tigated recently by Wang et al. [30]–[32] for the first time.
Two major contributions were achieved: 1) the peculiar nature
between nodal networks and edge networks was revealed ana-
lytically and 2) some elegant sufficient conditions based on
the relationship between them were derived to achieve the
desired non-negative edge consensus. Moreover, a different yet
related problem for the systems, which is called semiglobal
observer-based consensus, was studied in [23]. In addition,
Su et al. [24], [26]–[28] investigated the NECP for discrete-
time networked systems with observer-based protocols and/or
input constraints. In the NECP, the communication of the orig-
inal “node” networked system was modeled by a nodal graph
while the communication of the “edge” networked system was
modeled by a line graph [8], [16]. Particularly, we focus on the
edge networked system and investigate the consensus problem
among the edges with the consideration of non-negativevity in
this work. As indicated by the analysis in [32], to solve the
NECP, one can first obtain a line graph based on the map-
ping of a nodal graph, and then formulate the NECP as the
general consensus problem of an edge networked system with
non-negativevity constraints.

Since all existing results for non-negative edge consen-
sus are sufficient conditions, improved conditions having less
or no conservatism are always desirable. In this article, the
NECP is revisited and the improvement has been made
as follows.

1) Significantly enhanced consensuability analysis and syn-
thesis results that are less conservative than the existing
works are proposed.

2) Necessary and sufficient consensuability analysis and
synthesis conditions are proposed along with slack
matrix variables.
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3) Effective and efficient convex programming algorithms
are developed based on the theoretical results.

II. PRELIMINARIES

The symbol R is used to denote the set of real numbers,
R

n is used to denote the n dimensional Euclidean space, and
R

m×n is used to denote the set of m × n matrix for which all
entries belong to R. Throughout this article, for real symmetric
matrices X and Y , the notation X ≥ Y , (respectively, X > Y)
means that the matrix X − Y is positive semidefinite (respec-
tively, positive definite). I denotes the identity matrix with
appropriate dimension. A

⊗
B denotes the Kronecker product

of matrices A and B. Zn = {1, 2, . . . , n} denotes the set of
natural numbers from 1 to n. For a matrix A ∈ R

m×n, [A]ij

denotes the element located at the ith row and the jth col-
umn. A � 0 (respectively, A � 0) means that for all i and j,
[A]ij � 0 (respectively, [A]ij � 0). The notation A � B (respec-
tively, A � B) means that A−B � 0 (respectively, A−B � 0).
Matrix A ∈ R

n×n is called Metzler, if all of its off-diagonal
elements are non-negative, which is represented by A ∈ M

n.
The spectral abscissa, that is, the maximum among the real part
of the eigenvalues of matrix A, is represented by α(A). The
symbol ∗ is used to denote a matrix which can be inferred
by symmetry. The superscript T denotes the transpose of a
matrix. Matrices are assumed to have compatible dimensions
for algebraic operations they are is not explicitly stated.

Graphs are commonly used to represent the sensing, com-
munication, and other interaction topologies in networked
systems. In the following, we assume that the topology of
the nodal graph is represented by an undirected, connected
graph Ḡ = (V̄ , Ē ), where V̄ = {v̄1, v̄2, . . . , v̄n} is the set
of nodes, and Ē ⊂ V̄ × V̄ is the set of unordered pairs of
nodes, called edges. To represent the communication among
the edges of a nodal network, the corresponding line graph
should be constructed. Since the line graph of an undirected,
connected nodal graph is also connected, in the following,
we assume that the communication among edges of a nodal
network is represented by an undirected, connected line graph
G = (V , E ), where V = {v1, v2, . . . , vm} is the set of
nodes and E ⊂ V × V is the set of unordered pairs of
nodes, called edges. Two nodes vi and vj are adjacent if (vi,
vj) ∈ E . The adjacency matrix A ∈ R

m×m of an undirected,
connected line graph G is defined as [A ]ij = [A ]ji = 1
if (vi, vj) ∈ E but 0 otherwise. The set of neighbors of
node i is denoted by Ni = {j ∈ V : (vi, vj) ∈ E }. The
degree (in-degree) matrix D of line graph G is defined as
D = diag(d1, d2, . . . , dm) , where di = ∑m

j=1 [A ]ij, i ∈ Zm.
The Laplacian matrix is defined as L = D − A . The
description of the nodal graph has a similar definition as the
line graph. If the undirected line graph G is connected, the
Laplacian matrix L has a simple eigenvalue 0 and all the
other eigenvalues are positive and real, which can always be
sorted in nondecreasing order as 0 = λ1 	 λ2 	 · · · 	 λm

[7], [33]. Define dmax := max{di}, i ∈ Zm. 1n denotes
[1, 1, . . . , 1]T ∈ R

n. Regarding the details of how to derive
the line graph from an undirected nodal graph, one can refer
to [25] and [32].

III. MAIN RESULTS

Consider a nodal network with a nodal graph whose
edges are identical continuous-time positive linear
systems [1], [6], [9] as follows:

ẋi(t) = Axi(t) + Bui(t), i ∈ Zm (1)

distributed on a line graph G , where xi(t) := [xi1, xi2, . . . ,

xir]T ∈ R
r denotes the state and ui(t) ∈ R

m denotes the con-
trol input. System (1) is a multi-input positive linear system
of any order. Generally speaking, system (1) is said to be
a continuous-time positive linear system if the state is non-
negative for any non-negative initial state and non-negative
input [1], [6], [9]. Also, since (1) is a positive linear system,
the system matrix A ∈ R

r×r is Metzler, and the system
matrix B ∈ R

r×m is non-negative. It is worth mentioning
that system matrix A is Metzler and system matrix B is
non-negative which is a necessary and sufficient condition
for (1) to be positive [1], [6], [9]. Throughout this article, it
is assumed that (A, B) is stabilizable. Consider the commonly
used state-feedback protocol for consensus

ui(t) = K
∑

vj∈Ni

[A ]ij(xj(t) − xi(t)), i ∈ Zm. (2)

One can define

X(t) := [xT
1 (t), xT

2 (t), . . . , xT
N(t)]T

and obtain an edge networked system as

Ẋ(t) = AX(t) (3)

where A = Im ⊗ A − (L ⊗ BK).
On the basis of the aforementioned definitions, the follow-

ing non-negative consensus problem for the edge networked
system (3) is studied.

Non-Negative Edge Consensus Problem: Find a protocol (2)
such that, for any non-negative X(0), limt→∞ ‖xi(t) − xj(t)‖
= 0 ∀i, j ∈ Zm, and X(t) � 0 for t � 0.

For NECP, similar to [32], it is assumed that the commu-
nication topology among edges is represented by a line graph
that is undirected and connected. In their work, a detailed
analysis result was developed by using the information of the
number of nodes and edges of a nodal graph, and a sufficient
condition was obtained. According to the line in the analysis
of their work using positive systems theory and graph theory,
we notice that NECP is solvable if and only if A is Metzler and
Ai := A−λiBK, i ∈ Zm\{1}, are Hurwitz. This directly derives
the necessary and sufficient analysis condition for NECP as
follows.

Proposition 1: Consider the edge networked system in (3)
with an undirected, connected line graph, NECP is solvable
if and only if the following conditions hold: 1) matrix BK is
non-negative; 2) matrix A−dmaxBK is Metzler; and 3) matrices
AiPi + PT

i AT
i < 0, Pi > 0, i ∈ Zm\{1}.

For the comparison purpose, a sufficient analysis condition
is also provided in an equivalent form as follows.

Lemma 1 [32, Th. 1]: Consider the edge networked system
in (3) with an undirected, connected line graph, NECP is
solvable if the following conditions hold: 1) matrix BK is
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non-negative; 2) matrix A − (4m2 − 2m)BK is Metzler; and
3) matrix A − (4/(m2 − m))BK is Hurwitz where m denotes
the number of edges.

In Lemma 1, since an upper bound of dmax and λm is esti-
mated by 4m2 − 2m, and a lower bound of λ2 is estimated
by 4/(m2 − m), one has dmax ≺ 4m2 − 2m, λm 	 4m2 − 2m,
and λ2 � 4/(m2 − m). With BK � 0, one has A − (4/(m2 −
m))BK � A2 � A3 � . . . � Am � A − (4m2 − 2m)BK and
A−dmaxBK � A−(4m2−2m)BK. Then, based on the property
of Metzler matrices (see [32, Lemma 8]), one has A−dmaxBK
is Metzler and A−λiBK, i ∈ Zm\{1}, are Metzler and Hurwitz
if the conditions in Lemma 1 hold, which indicates that NECP
is solved according to Proposition 1.

The Laplacian matrix of an undirected, connected graph
with m nodes has the following fact that dmax 	 m−1 ≺ m and
λm 	 m [2]. Notice that 4m2 − 2m − m = m(4m − 3) � 0 for
m � 1, a better upper bound of dmax and λm should be m rather
than 4m2−2m and, thus, an improved result of Lemma 1 with-
out using the global information of a graph can be obtained
as follows.

Proposition 2: Consider the edge networked system in (3)
with an undirected, connected line graph, NECP is solvable if
the following conditions hold: 1) matrix BK is non-negative;
2) matrix A − mBK is Metzler; and 3) matrix A − (4/(m2 −
m))BK is Hurwitz, where m denotes the number of edges.

Remark 1: The gap between the two upper bounds diverges
at a rate equal to m(4m − 3) for m � 1 as m increases.

Since the asymptotic stability of continuous-time positive
linear systems admits a linear co-positive Lyapunov func-
tion [6], a non-negative edge consensus design condition
represented in the form of linear programming can be obtained
in the following proposition.

Proposition 3: Considering the edge networked system
in (3) with an undirected, connected line graph, NECP is solv-
able if there exist a diagonal matrix D > 0 and a matrix U such
that the following linear program holds: 1) BU is non-negative;
2) AD−mBU is Metzler; and 3) (AD− (4/(m2 −m))BU)1r is
negative where m denotes the number of edges. When these
conditions hold, K = UD−1.

Proof: Notice that K = UD−1 and D > 0 imply that
U = KD. Substituting it into the conditions, one can see that
conditions 1) and 2) are equivalent to those in Proposition 2
since matrix D > 0 is diagonal. Also, condition 3) becomes
(A − (4/(m2 − m))BK)D1r ≺ 0. According to the asymptotic
stability condition of positive linear systems [6], one can con-
clude that A − (4/(m2 − m))BK is Hurwitz. This completes
the proof.

All the results in [32] and our Propositions 2 and 3 are
sufficient conditions for the existence of a solution. However,
a necessary and sufficient condition is always desirable for
the solvability of NECP. In the following, we will focus on
Proposition 1 which is a necessary and sufficient condition,
and give some equivalent conditions of it for the solvability
of NECP. Two novel equivalent descriptions of Proposition 1
are obtained with the introduction of slack matrix variables.

Theorem 1: Considering the edge networked system in (3)
with an undirected, connected line graph, NECP is solvable
if there exist matrices Pi > 0, Gi, Hi, i ∈ Zm\{1}, and a

diagonal matrix Q > 0 such that the following conditions hold:
1) matrix BKQ is non-negative; 2) matrix AQ − dmaxBKQ is
Metzler; and 3)

�1i :=
⎡

⎣
�̄1i PT

i − GT
i + AHT

i BKQ − λiGT
i∗ − Hi − HT

i − λiHi

∗ ∗ − Q

⎤

⎦ < 0

i ∈ Zm\{1} (4)

where �̄1i = AGi + GT
i AT − BKQKTBT.

Proof: Notice that Ai = A − λiBK, i ∈ Zm\{1} has been
defined previously. Obviously, since Q > 0 is diagonal, con-
ditions 1) and 2) are equivalent to those in Proposition 1. Then,
we need to prove the equivalence of conditions 3).

Sufficiency: Let

T1 :=
⎡

⎣
I 0 BK
0 I 0
0 0 I

⎤

⎦.

Premultiplying and postmultiplying �1i by T1 and TT
1 , respec-

tively, gives

�2i := T1�1iT
T
1

=
⎡

⎣
AiGi + GT

i AT
i Pi − GT

i + AiHT
i − λiPi

∗ −Hi − HT
i 0

∗ ∗ − Q

⎤

⎦ < 0

i ∈ Zm\{1}.
Let

T2i = [
I Ai 0

]
, i ∈ Zm\{1}.

Premultiplying and postmultiplying �2i by T2i and TT
2i, respec-

tively, gives

AiPi + PiA
T
i < 0, i ∈ Zm\{1}

which is equivalent to condition 3) in Proposition 1.
Necessity: If condition 3) in Proposition 1 holds, one can

always find a diagonal matrix Q̄ > 0 and a sufficiently large
scalar c � 0 such that

AiPi + PiA
T
i + λ2

i

c
PiQ̄

−1Pi < 0, Pi > 0, i ∈ Zm\{1}.
(5)

Letting Q = cQ̄, then (5) becomes

AiPi + PiA
T
i + λ2

i PiQ
−1Pi < 0, Pi > 0, i ∈ Zm\{1}.

(6)

If (6) holds, there must exist matrices H̄i > 0, i ∈ Zm\{1},
and a sufficiently small scalar d > 0 such that
{

−dH̄i − d2H̄T
i Ai(AiPi + PiAT

i + λ2
i PiQ−1Pi)

−1AT
i H̄i < 0

Pi > 0, i ∈ Zm\{1}
(7)

hold. Selecting Gi = Pi and Hi = dH̄i, (7) becomes
{

−Hi − HT
i Ai(AiGi + GT

i AT
i + λ2

i PiQ−1Pi)
−1AT

i Hi < 0

Pi > 0, i ∈ Zm\{1}.
(8)
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By Schur complement equivalence, (8) is equivalent to �2i <

0, i ∈ Zm\{1}, which has further implied that �1i =
T−1

1 �2iT
−T
1 < 0, i ∈ Zm\{1}, hold.

In summary, if

AiPi + PiA
T
i < 0, Pi > 0, i ∈ Zm\{1}

hold, one can always find matrices Gi = Pi > 0, Hi > 0,
i ∈ Zm\{1}, and a diagonal matrix Q > 0 such that �1i < 0,
i ∈ Zm\{1}, hold. This completes the proof.

The most important characteristic in Theorem 1 is that
controller K has been further separated from Lyapunov matri-
ces Pi thanks to the slack matrix variables. However, by
observing (4), one can see that it remains a nonlinear matrix
inequality problem, which is not easy to solve. This motivates
us to give another equivalent condition for the solution in the
following.

Theorem 2: Consider the edge networked system in (3)
with an undirected, connected line graph, NECP is solvable
if there exist matrices Pi > 0, Gi, Hi, i ∈ Zm\{1}, S, and
a diagonal matrix Q > 0 such that the following conditions
hold: 1) matrix BS is non-negative; 2) matrix AQ − dmaxBS is
Metzler; and 3)

�i :=
⎡

⎣
�̄i Pi − GT

i + AHT
i BS − λiGT

i∗ − Hi − HT
i − λiHi

∗ ∗ − Q

⎤

⎦ < 0, i ∈ Zm\{1}

(9)

where �̄i = AGi +GT
i AT −BSMTBT −BMSTBT +BMQMTBT.

When these conditions hold, K = SQ−1.
Proof: Notice that K = SQ−1 gives rise to S = KQ and we

substitute it into the conditions. One can see that conditions
1) and 2) are equivalent to those in Theorem 1. We need to
prove the equivalence of condition 3) in the following.

Sufficiency: It follows from �̄i = AGi +GT
i AT −BSMTBT −

BMSTBT + BMQMTBT = AGi + GT
i AT − BKQKTBT + B(K −

M)Q(K −M)TBT = �̄1i +B(K −M)Q(K −M)TBT and B(K −
M)Q(K − M)TBT ≥ 0 that �1i ≤ �i < 0, i ∈ Zm\{1}.

Necessity: If (4) holds, there must exist a matrix M =
K such that −BKQKTBT = −BKQMTBT − BMQKTBT +
BMQMTBT and, thus, (4) gives rise to (9) due to S = KQ.
This completes the proof.

Theorems 1 and 2 are two equivalent conditions of
Proposition 1. Notice that �i < 0, i ∈ Zm\{1}, are nonlinear
matrix inequalities with respect to the variables to be solved in
Theorem 2. However, if matrix M is fixed, they all become lin-
ear matrix inequalities that are convex. By defining �i < εI,
i ∈ Zm\{1}, and minimizing ε with respect to M, one can see
from the proof in Theorem 2 that when M = K, the min-
imal ε is obtained. Therefore, one can fix M and minimize
ε, and then update M as K. Repeating such a procedure, a
heuristic iterative algorithm based on Theorem 2 is developed
in Algorithm 1 [non-negative edge consensus problem with
undirected graphs (NECPUG)].

Remark 2: In step 1, a matrix M(1), which guarantees the
edge consensus of networked systems without the require-
ment of non-negativevity, is found for initializing the algo-
rithm. Such a process can be easily realized since a lot of
consensus approaches for general linear systems have been
developed [11], [33].

Algorithm 1 NECPUG

Step 1: Set k = 1 and ε(0) = 0. Find an M(1) such that
A − λiBM(1), i ∈ Zm\{1}, are Hurwitz.

Step 2: Fix M = M(k), minimize ε(k) s.t. {BS � 0, AQ −
dmaxBS ∈ M

r, �i < ε(k)I, i ∈ Zm\{1}} with respect
to Pi > 0, Gi, Hi, S, and a diagonal matrix Q >

0, i ∈ Zm\{1}. If ε(k) 	 0, K = SQ−1. STOP.
Otherwise, go to next step.

Step 3: If |ε(k) − ε(k−1)|/ε(k) ≺ θ , where θ is a prescribed
tolerance, then this algorithm fails to find the
desired solution. STOP. Otherwise, set k = k + 1,
update M(k) = SQ−1, then go to step 2.

Remark 3: Generally speaking, the major advantage of our
approach lies in: 1) the slack matrix variable Q in our approach
is not only independent of the Lyapunov matrices Pi but also
able to parametrize the controller gain to preserve the non-
negativevity without introducing any conservatism and 2) the
introduced slack matrix variables Gi, Hi, and Q are expected to
provide some additional flexibility for improving the iterative
computation of the algorithm [3], [12].

Remark 4: If the topologies of the edge networked system
are described by directed graphs each containing a spanning
tree, the NECP would become more complicated due to the
interplay between the eigenvalues of the Laplacian matrix and
the controller gains. Specifically, the problem would involve
complex eigenvalues in general, the Hurwitzness of complex
matrices, as well as non-negativevity constraints, which make
the analysis of the Laplacian matrix difficult. Another issue
that should be addressed is the relationship between nodal
graph and line graph guaranteeing the non-negative edge con-
sensus while the nodal graph is directed. Once these issues
are tackled appropriately, we believe that our methods could
be extended to solve the NECP defined on directed graphs.

IV. ILLUSTRATIVE EXAMPLES

This section gives three illustrative examples to compare
our proposed approaches with the existing one in [32].

A. Example 1

In this example, we will show that the solution set of our
approach is a strict superset of that provided by the existing
approach. Notice that in the existing work [32], all the edge
dynamic systems in the simulations are positive linear systems
that are marginally stable, having one zero eigenvalue and one
negative eigenvalue. Let us take the system (28) from [32,
Sec. IV] the following example:

A =
[−1 1

1 − 1

]

, B =
[

1
1

]

whose spectrum are {−2, 0} and the communication topol-
ogy is represented by the graph in [32, Fig. 2]. Obviously,
this system is stabilizable. It is worth mentioning that in both
Lemma 1 and Proposition 2, conditions 1) and 2) guaran-
tee the nonnegaivity while condition 3) is concerned with
the consensuability. Notice that the conditions 1) and 3)
in Lemma 1 and Proposition 2 are identical, so it suffices
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to analyze their conditions 2). The Laplacian matrix of an
undirected, connected graph with m nodes has the follow-
ing fact that dmax 	 m − 1 ≺ m [2]. Also, we have that
4m2 − 2m − m = m(4m − 3) � 0 for m � 1. Hence, we
can conclude that 4m2 − 2m � m � dmax for m � 1. Notice
that the condition 1) matrix BK is non-negative in Lemma
1 and Propositions 1 and 2. By observing condition 2) of
Proposition 1 (which is a necessary and sufficient condition
for nonenagtive edge consensus), and comparing the condi-
tions 2) of Lemma 1 and Proposition 2, we conclude that
A − (4m2 − 2m)BK � A − mBK � A − dmaxBK are all Metzler
for m � 1. This is also equivalent to

min
i�=j,[BK]ij �=0

[A]ij

[BK]ij
� 4m2 − 2m � m � dmax � 0 (10)

for i, j ∈ Zm and m � 1. From (10), we can see that a tighter
upper bound of dmax should be m rather than 4m2 − 2m since
the conditions from Proposition 2 can provide a larger solution
set than from Lemma 1. In other words, the set of solutions by
our approach is a strict superset of that provided by Lemma
1. Moreover, the advantage increases linearly with m. In this
example, since m = 16 and dmax = 8, we have that 4m2−2m =
992 � m = 16 � dmax = 8, which is consistent with the
theoretical analysis.

By observing the conditions in Lemma 1 and Proposition 2,
we know that only condition (ii) between them is differ-
ent and the other two are identical. One is that A − 992BK
is Metzler and the other one is that A − 16BK is Metzler.
The “Metzler region” represents the set of controller K such
that the non-negativevity of the edge networked system is
preserved. Letting K = [k1, k2] and noticing the condition
(i) BK � 0, the Metzler region corresponding to A − 992BK
can be expressed as

{
0 	 k1 	 1

992

0 	 k2 	 1
992 .

The Metzler region corresponding to A − 16BK can be
expressed as

{
0 	 k1 	 1

16

0 	 k2 	 1
16 .

It can be clearly seen that the latter one from Propositon 2 in
this article is a strict superset of the former one from Lemma 1.
Indeed, the area of the gain parameter region (Proposition 2)
is 3844 times that in the existing approach (Lemma 1). This is
also consistent with the previous analysis that a tighter upper
bound of dmax should be m rather than 4m2 − 2m. In other
words, the results proposed in Propositions 2 are significantly
less conservative than Lemma 1.

Besides, based on the co-positive Lyapunov function
[7], Proposition 3, which is an equivalent condition of
Proposition 2, is obtained in the form of linear programming.
We can use the linear program in Proposition 3 to solve the
controller directly. Solving the linear program in Proposition 3
using MATLAB R2014a gives a feasible solution as

K = [
0.06 0.06

]
. (11)

Fig. 1. (a) Nodal graph. (b) Line graph.

Substituting (11) into Lemma 1, we found that

A − 992BK =
[−60.520 − 58.520
−58.520 − 60.520

]

is not Metlzer. On the contrary, substituting (11) into
Proposition 2, we found that

A − 16BK =
[−1.96 0.04

0.04 − 1.96

]

is Metlzer. The solution in [32] is also presented here as
follows:

K = [
0.001 0.001

]
. (12)

With controller (12), it can be verified that both

A − 992BK =
[−1.992 0.0008

0.0008 − 1.992

]

and

A − 16BK =
[−1.0160 0.9840

0.9840 − 1.0160

]

are all Metzler. Therefore, Proposition 2 (or 3) has provided
a controller (11) not belonging to the solution set of Lemma
1, while Lemma 1 has provided a controller (12) belonging
to the solution sets of both Proposition 2 (or 3) and Lemma
1. The results could further indicate that Proposition 2 (or 3)
provides more feasible solutions than Lemma 1, which is also
consistent with the previous theoretical analysis.

B. Example 2

In Example 1, we consider the case of marginally stable
agents. In order to compare our approaches with the existing
work thoroughly, in the following sections, we consider the
case of unstable agents.

To show the effectiveness of the approaches, we consider
an edge networked system whose edges are unstable with
system matrices. To intuitively compare the conservatism of
Propositions 1 and 2 as well as Lemma 1, we consider a pos-
itive edge networked system in (3) and each edge dynamic
system has the following system matrices:

A =
[−1.3 2

2 − 1.3

]

, B =
[

1
1

]

whose spectrum is {−3.3, 0.7}. Obviously, this system is sta-
bilizable. The nodal graph and line graph, each comprising
three nodes and three edges, are shown in Fig. 1 from which
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Fig. 2. Metzler and consensus regions. (a) Proposition 1. (b) Lemma 1 [31, Th. 1]. (c) Proposition 2.

we can see that they are identical. The Laplacian matrix of
the line graph is as follows:

L =
⎡

⎣
2 − 1 − 1

−1 2 − 1
−1 − 1 2

⎤

⎦.

Then, we have dmax = 2, λ2 = λ3 = 3. Lemma 1 gives
an upper bound of dmax and λm as 4m2 − 2m = 30 while
Proposition 2 gives m = 3. Let K = [k1, k2]. The “consen-
sus region” represents the set of K such that the consensus of
edge networked system is achieved. To illustrate the conser-
vatism of these analysis results for NECP, the Metzler and
consensus regions of Propositions 1 and 2 and Lemma 1
are plotted in Fig. 2. Consensus region represents the set
of K such that the consensus of edge networked system is
achieved. Specifically, K in the Metzler region expressed by
yellow can guarantee the non-negativevity. Using the Routh–
Hurwitz stability criterion, it is found that the consensus
region of Proposition 1 is determined by the following linear
inequality:

k1 + k2 � 7

30
while that of Lemma 1 and Proposition 2 is determined by the
linear inequality

k1 + k2 � 21

20
.

It can be seen that the consensus regions of them are
unbounded. If K is located at the consensus region expressed
by red, then edge consensus is achieved. The M-C region,
which is a common region of consensus and Metzler regions,
expressed by orange, is exactly the feasible solution region
of NECP. From Fig. 2(b), we can see that its Metzler region
is a strict superset of the other ones, and the feasible solution
region is empty. Apparently, this situation would get worse and
worse as the number of edges increases. Therefore, the exist-
ing approaches, which are based on the analysis condition in
Lemma 1, cannot give a solution for NECP. Fortunately, since
both Propositions 1 and 2 have their feasible solution regions
expressed by orange in Fig. 2(a) and (c), they can be used
to derive some consensuability and non-negativevity synthesis
approaches that have less or no conservatism for the solvability

of NECP. According to the discussions on the conservatism of
Propositions 1 and 2, we know that Propositions 1 and 2 have
their feasible solution regions expressed by orange in Fig. 2(a)
and (c). Therefore, we can use the approach of Proposition 3
(based on Proposition 2), and Algorithm NECPUG (based on
Proposition 1) to solve NECP. Solving the linear program
in Proposition 3 using MATLAB R2014a gives a feasible
solution as

K = [
0.6125 0.6039

]
. (13)

With controller (13), we have

BK =
[

0.6125 0.6039
0.6125 0.6039

]

� 0

A2 = A3 = A − mBK

=
[−3.1375 0.1883

0.1625 − 3.1117

]

∈ M
2

A − (4/(m2 − m))BK =
[−1.7083 1.5974

1.5917 − 1.7026

]

∈ M
2

whose eigenvalues are {−0.11093, −3.3}. The conditions in
Proposition 2 have been satisfied.

By Algorithm NECPUG, a feasible solution is obtained as

K = [
0.8134 0.1158

]
. (14)

With controller (14), we have

BK =
[

0.8134 0.1158
0.8134 0.1158

]

� 0

A − dmaxBK =
[−2.9268 1.7684

0.3732 − 1.5316

]

∈ M
2

A2 = A3 =
[−3.7402 1.6526
−0.4402 − 1.6474

]

/∈ M
2

whose eigenvalues are {−2.0876, −3.3}. The conditions in
Proposition 1 have been satisfied. Let the initial conditions of
Agents 1–3, respectively, be

[
x11(0)

x12(0)

]

=
[

5
10

]

,

[
x21(0)

x22(0)

]

=
[

0
20

]

,

[
x31(0)

x32(0)

]

=
[

10
50

]

.

(15)

The non-negative edge consensus results using controllers (13)
and (14) are shown in Figs. 3 and 4 where the small
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Fig. 3. Non-negative edge consensus using controller (13).

Fig. 4. Non-negative edge consensus using controller (14).

circle denotes the initial trajectory point of each agent.
From the two figures, we can see that the edge consen-
sus has been achieved and the states of edges remained
non-negative.

In this example, the existing approach provided an empty
solution region since their theoretical results are more conser-
vative than ours, which has been shown in Fig. 2(b). Notice
that controller (13) shows that A2 and A3 are Metzler while
those given by controller (14) are not.

Through Proposition 3, represented by linear programming,
our proposed approach is not just a sufficient condition for
solvability but also an efficient one that is more than the
semidefinite programming approach, from a computational
perspective.

This is because Ai, i ∈ Zm\{1}, being Metzler, are neces-
sary in Propositions 2 and 3, which are sufficient conditions
for the solvability of NECP. Although the linear program-
ming approach of Proposition 3 is a sufficient condition for
the solvability, however, it is generally more efficient than

Fig. 5. Non-negative edge consensus using controller (16).

the semidefinite programming approach from a computational
point of view.

C. Example 3

Consider a positive edge networked system in (3) and each
edge dynamic system has the following system matrices:

A =
[−1 2

2 − 1

]

, B =
[

1
1

]

whose eigenvalues are {−3, 1}. Obviously, this system is sta-
bilizable and has one unstable pole 1. Assume that it has a
similar communication topology as that in case 1.

Using the approach in Proposition 3 and the existing work,
no feasible solution has been found. Then, we use Algorithm
NECPUG, and a feasible solution is obtained as

K = [
0.5398 0.9126

]
. (16)

With controller (16), we have

BK =
[

0.5398 0.9126
0.5398 0.9126

]

� 0

A − dmaxBK =
[−2.0796 0.1748

0.9204 −2.8252

]

∈ M
2

A2 = A3 =
[−2.6194 −0.7378

0.3806 −3.7378

]

/∈ M
2

whose eigenvalues are {−3, −3.3572}. The conditions in
Proposition 1 have been satisfied. In this example, Algorithm
NECPUG has solved it successfully since it has no conser-
vatism. Similarly, we let the initial conditions of Agents 1–3
be (15). The non-negative edge consensus result using con-
troller (16) is shown in Fig. 5 where the small circle denotes
the initial trajectory point of each agent. From the figure, we
can see that the edge consensus has been achieved and the
states of edges remained non-negative.

A summary of the three illustrative examples is given as
follows.

1) The first example has shown that, though both our
approach and the existing approach can provide feasible
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solutions, the set of solutions by our approach is a strict
superset of that provided by the existing approach.

2) In the second example, an analytical and numerical com-
parison of solution regions by two different approaches
was carried out. We can see that the feasible solution
region by the existing approach is empty while our
approaches can solve the problem, which indicates our
approaches are less conservative.

3) From the third example, it has been shown that
Algorithm NECPUG has solved the problem success-
fully since it is developed via the necessary and suffi-
cient conditions of Theorem 2 (which is derived on the
basis of Proposition 1 and Theorem 1).

V. CONCLUSION

In this article, the NECP has been addressed and solved
for positive networked systems with undirected graphs using
state-feedback protocols. An improved upper bound has been
given for the maximum eigenvalue of the Laplacian matrix
and the (out) in-degree of the degree matrix. This can lead to
an improved consensuability and non-negativevity condition.
In addition, by introducing some slack matrix variables, two
necessary and sufficient conditions of consensuability and non-
negativevity have been given such that the system matrices,
controller gain, as well as Lyapunov matrices are separated.
The conditions can lead to a semidefinite programming algo-
rithm for solvability. The proposed results have been verified
with comparisons via three illustrative examples.
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