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1. Introduction

Proprioception plays a fundamental part in biological systems,
allowing precise and safe interaction with their environment.
In the landscape of bioinspired technologies, proprioceptive

awareness plays a similar role, allowing
robots to effectively explore unstructured
environments and ensure safe interac-
tion.[1,2] Basic proprioception in robotics
has been developed in the form of joint
encoders and pressure sensors but is
lacking in the detection of higher order
morphological changes. With the advance-
ment of flexible robotic systems, including
soft robotics, the task of integrating propri-
oception becomes challenging when
compared with their standard rigid-link
counterparts. In particular for soft robots,
their conformability and infinite degrees
of freedom (DoF) allow them to perform
challenging tasks but pose additional
complications for their proprioception due
to often unrestricted deformability.[3,4]

This not only raises an additional challenge
above rigid-link robots, as sensing possibil-
ities for soft robotics are not limited to robot
tip position or simplified curves, but also
extends to detecting 3D surface shape to
fully represent their morphology.[5]

In the past, researchers have realized
surface shape sensing by using dense arrays of sensors.[6]

These sensor arrays could gather local position and orientation
information, combining to give global displacement profiles and
therefore shape reconstruction. Microelectromechanical systems
(MEMS) in various forms are commonly integrated with robotic
systems.[7,8] These small-sized sensors can be attached to objects
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Proprioception, the ability to perceive one’s own configuration and movement in
space, enables organisms to safely and accurately interact with their environment
and each other. The underlying sensory nerves that make this possible are highly
dense and use sophisticated communication pathways to propagate signals from
nerves in muscle, skin, and joints to the central nervous system wherein the
organism can process and react to stimuli. In a step forward to realize robots with
such perceptive capability, a flexible sensor framework that incorporates a novel
modeling strategy, taking advantage of computational mechanics and machine
learning, is proposed. The sensor framework on a large flexible sensor that
transforms sparsely distributed strains into continuous surface is implemented.
Finite element (FE) analysis is utilized to determine design parameters, while an
FE model is built to enrich the morphological data used in the supervised training
to achieve continuous surface reconstruction. A mapping between the local strain
data and the enriched surface data is subsequently trained using ensemble
learning. This hybrid approach enables real time, robust, and high-order surface
reconstruction. The sensing performance is evaluated in terms of accuracy,
repeatability, and feasibility with numerous scenarios, which has not been
demonstrated on such a large-scale sensor before.
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for transducing local position and orientation information. A
similar design can be seen in grid-patterned, three-axis acceler-
ometers attached on a surface[9,10] and an artificial skin with a
rigid hexagonal sensor as the unit cell.[11] These cells communi-
cate their relative poses with each other to generate the overall
surface shape. Saguin-Sprynski extended the work to a sparsely
distributed sensor array.[12] The surface curves as well as orienta-
tion measurements were utilized for surface shape reconstruc-
tion. However, the complexity of wiring and electrical
connections severely hinders scalability and compatibility with
flexible robotic systems. Some efforts have been dedicated to
using an optical-based method to estimate surface shape.
Through multiplexing small-sized and compliant optical
sensors,[13–15] wiring complexity is highly reduced. For instance,
in work done by Xu et al., two fiber layers were used in a mesh
layout to detect 3D shapes.[16] However, this type of design
requires precise orthogonal alignment of two fiber layers to sense
and reconstruct both convex and concave shapes.

Compared with precisely and densely laid sensor layouts,
researchers began to search for solutions requiring fewer local
sensing elements and lower configuration complexity.[3,6] As a
result, data-driven methods have been proposed. For instance,
Rendl et al. printed 16 piezoelectric sensors at an outer ring
of a transparent sheet, for sensing continuous surface deforma-
tions.[17] This provided a flexible system that could sense the
bending configuration with roughly centimeter-level accuracy
over an A4-like form-factor, using a machine learning approach.
In other research, an array of optical fiber was embedded
inside an elastomeric foam, with their outputs fed to several
machine learning algorithms to predict the sensor deformation
mode and angle.[18] In our previous work, a square surface shape
sensor was designed, wherein a dual-layer fiber Bragg grating
(FBG) layout was embedded in a silicone rubber substrate and
a neural network was implemented for real-time 3D shape
reconstruction.[19] However, the small size (45� 45� 5mm)
of the sensor, to some degree, limited the deformation magni-
tude and its range of applications. Generally, these reconstruc-
tion methods dealt well with sensing simple morphology
changes. However, challenges include limited sensing ability
for complex and large-scale deformation, as well as dependence
on sufficient training data acquired physically with larger sizes
of sensors.

Representation of irregular or complicated surfaces remains
challenging, especially for large-scale target and dynamic mor-
phology changes. The finite element (FE) method can provide
high accuracy and sufficient virtual data,[20] as it takes geometric
and material characteristics into account.[21] As FE modeling can
provide abundant noise-free data, it is an interesting proposition
to train a learning-based model with such virtually generated
data.[22] Previously, Lee et al. proposed a nonparametric model
learning framework for controlling a hydraulic-driven soft
robot.[23] In their study, pretraining data are obtained by
sampling data from a FE model for initializing an online kine-
matics model. However, the high computational costs associated
with the numerical analysis usually confined it to be used offline
only. To speed up the FE simulation for real-time applications,
several techniques have been proposed.[20] One approach is to
lower the computational complexity of the algorithm through
a reduction of the model’s DoF. However, this method would

result in a loss of accuracy, especially for models with high non-
linearity. Another speed-up approach is to use parallel
computing strategies by dividing the global complex problem
domain into smaller independent subdomains processed
simultaneously;[24] however, it is still far from enabling high-
frequency FE simulation in real time.

To realize accurate and real-time proprioception, we propose a
real-time surface sensing framework applicable to various sensor
shapes and sensing element types. The framework integrates FE
modeling with machine learning methods, requiring only
sparsely distributed sensing elements to predict dynamic and
complicated morphology changes in the sensor. Such integration
provides basis for the development of large-scale shape sensing,
which has not been demonstrated and reported before. The pro-
posed shape sensing frame could be used as a wearable device or
on some bioinspired robots, such as marine robot[25,26] and flying
soft robot.[27] FE analysis is used to analyze sensor parameters
and to enrich machine learning training data by generating a
dense array of enriched nodes from amuch smaller set of tracked
nodes. Using this approach, we can effectively compensate for
accumulated errors and provide robust surface shape reconstruc-
tion. We propose an ensemble learning model comprising 24
artificial neural networks (ANNs) to learn and train the strain-
to-shape mapping. To ensure real-time prediction, the calcula-
tion time is limited to 10ms in each time step. The primary
contributions of this research are differentiated as follows:
1) Development of a surface sensing framework that is validated
on a large-scale (e.g., A4-sized), flexible, and thin (1mm) sensor
prototype capable of undergoing high-order surface deformation
in real time. 2) A learning-based morphology modeling approach
using FE-enriched data, which enables application-focused
customization and production. 3) Experimental verification for
the proposed shape reconstruction is conducted to characterize
the sensor accuracy, flexibility, and repeatability, even being dis-
placed by hydrodynamic forces.

2. Results and Discussion

An A4-sized (210� 297mm) flexible surface shape sensor
(Figure 1) was developed through our FE-integrated framework
(Figure S1, Supporting Information). FE modeling is utilized for
testing design parameters of the sensor prior to fabrication,
wherein parameters such as sensor thickness and sensing ele-
ment placement can be tuned depending on the intended appli-
cation. The surface shape sensor utilized 29 sparsely distributed
FBGs as the underlying sensing elements for measuring strain,
which were subsequently used as inputs to train a model to
reconstruct the 3D surface morphology of the shape sensor.
A demonstration of the shape sensor’s response to different
external stimuli is presented in Video S1 and S2, Supporting
Information, including shape reconstruction during hands-on
deformation, and impact from water jet and small projectile
beads. Shape reconstruction accuracy, repeatability, and hystere-
sis tests were also performed on the developed shape sensor.
The resulting performance is achieved through our hybrid
approach of FE-based data enrichment and ensemble learning
method, with details described in the sections later.
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2.1. Morphology Reconstruction via Ensemble Learning

Proprioception in real time typically requires high update fre-
quency and low latency while minimizing compromise on sens-
ing accuracy. To achieve high-frequency calculation, an
ensembled model was used to create a mapping from the 29
FBG strain data to a grid of 11� 7 surface node positions evenly
distributed along the shape sensor (Figure 2a).

Ground truth data were obtained by capturing the 3D position
of nine control points selected on the shape sensor surface,
which were distributed evenly along its four edges, along with
one located in the center. During the data capture, one corner
control point was fixed in position and the remaining eight
control points were each measured at 40 Hz with five DoF elec-
tromagnetic (EM) tracking markers (Aurora V3, NDI) attached to
the shape sensor surface (Figure 2a), while the FBG strain data
were simultaneously captured (FBG-Scan 804D).

All the data for model training were obtained in a single ses-
sion of hands-on sensor deformation, which took over 100 s and
�20 different “key-frame” poses. The nine tracked control points
were enriched to a grid of 11� 7 positional nodes through
FE-based data enrichment, and then used for the ensemble
model output. The 29 strain-measuring FBGs were integrated

into the shape sensor in a single optical fiber placed in a dog-bone
layout (Figure 2a), with center-to-center spacings of �22mm
between FBGs. A total of 1500 sets of FBG and node data were
captured, with 1000 used for training the learning model, 200 for
model validation, and 300 for testing of reconstruction accuracy.
To withstand repeated strains sensing, we intentionally kept a
safety threshold of bending radius during data acquisition.
Extreme robot configurations that induce large local strains were
avoided, and the resulting valid minimum sensing bending
radius is �20mm.

Ensemble learning configuration parameters in terms of
1) the node density (total nodes in the A4 size) and 2) the
submodel size (window size) were tested to evaluate their effect
on prediction accuracy and processing time. As shown in
Figure 2b, three different node densities (i.e., 7� 5, 11� 7,
and 21� 13 nodes) and eight window sizes (ranging from
1/16 to 1 times the A4 size) were compared. As for a specified
node density, smaller window sizes would result in more
windows (submodels) for prediction, thereby increasing the proc-
essing time. It also reduces the prediction error, which refers to
hereinafter as the deviation between the predicted nodal displace-
ment and the EM-tracked displacement. The denser the node on
the A4, the longer the prediction time due to the increased

Figure 1. Surface shape reconstruction instances. The deformed shape sensor (left column) is illustrated with corresponding shape reconstruction
(middle column) with warmer colors indicating larger displacement (see Video S1 and S2, Supporting Information). FE simulations with fiber placement
(right column) are shown with colored lines, indicating the magnitude of fiber strain.
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number of submodels as well as the higher output data size for
each submodel. To maintain a reasonably high update frequency
at >100Hz required for closed-loop robotic control, we limit the
processing time per time step<10ms. This is also a requirement
for neural transmission when realizing proprioception, which
takes in a few milliseconds or less. Therefore, 11� 7 nodes with
24 submodels (6� 4 nodes) were selected for this A4-size surface
model training (i7-6820HK, 16 GB RAM, GTX 1070), taking
account of a trade-off among the FE-based nodes density, the
learning-based prediction error, and the sensing frequency.

2.2. FE-Based Data Enrichment

The integration of FE-based data enrichment highly relaxes the
amount of ground truth that needs to be captured in a data-driven

approach, where position-tracked control points data were
imported into the FE model as displacement constraints to gen-
erate a rich amount of surface nodes data offline. Although we
utilized an EM-based tracking system for ground truth capturing,
other tracking modalities can be used with this sensing
framework, provided that they are capable of accurately measur-
ing node data on the shape sensor surface even in the case of
complex or overlapping deformation. For example, camera-
based motion capture systems can be used to obtain the original
node data and then become enriched via FE modeling,
thus reducing the number of motion reflective markers
needed.[17,28,29]

Simulated environment was used to evaluate the accuracy of
the FE-enrichment method in comparison to two commonly
used surface approximation methods (Figure 3a), namely

Figure 2. Model training with ensemble learning. a) Model training withM Bragg shifted wavelengths as input to N (6� 4) multilayer Perceptron regres-
sors, which includes two hidden layers of 150 and 300 neurons, respectively. The whole surface node set is divided by N windows, with each window
covering the same number of nodes. Each window involves an ANN-based submodel with the same M (29) input FBGs data. b) Prediction time and
accuracy as a result of changing the node density (7� 5, 11� 7, and 21� 13 nodes) and the window size (from 1/16 to 1 times the A4 size), where the
size ratio refers to the ratio of window size to the A4 size.
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bilinear and nonlinear interpolations. A virtual A4-sized sensor
was placed on a reference cylinder object (with radius of
R¼ 115mm), which acted as the ground truth shape. Each
method used the nine tracked sensor nodes as inputs/query
points and displacement errors were calculated against the cylin-
der ground truth. The FE-enrichment method demonstrated a
maximum displacement error of 3.2mm, which outperformed
the piecewise bilinear interpolation method (maximum error
�19.7mm) and triangle-based nonlinear surface interpolation
(maximum error�16.8mm).[30] The performance of the FE-based
data enrichment method can be attributed to its use of the real
sensor’s geometric and material properties in the FE model.

The strain responses of various deformation patterns were
also tested and compared (Figure 3b) with 3000 frames of simu-
lated strain data and its corresponding displacement from FE
simulation for model training. The overall error was small with
a mean of 0.6995mm, achieving a high goodness-of-fit with a
correlation coefficient >0.999. The results support the feasibility
of using a data-driven method to model the strain-morphology
mapping prior to its real sensor fabrication, and the clear varia-
tion in fiber strains indicates that surface morphology could be
well differentiated and thus reconstructed from the strain data.

2.3. Accuracy and Flexibility

The shape sensor flexibility was tested with various high-order
deformation such that the surface nodes would undergo large
displacements (Figure 1 and Video S1, Supporting
Information). To evaluate shape sensing accuracy, 300 deforma-
tion instances were randomly selected to compare with the
EM-tracked ground truth nodes. Note that such distinct deforma-
tion instances were not used in the previous model training.
A histogram of 2700 nodal displacement errors (300� 9 nodes)
is shown in Figure 4a, which indicates that nearly 90% of the
samples were well below 5mm with a mean of 2.28mm.
The root-mean-square error (RMSE) of each tracked node and
the fixed point (A7), with respect to their position on the sensor,
is shown in Figure 4b,c. The warmer color of dots indicates a
larger displacement sensing error. It can be observed that the
prediction error of each node has a strong relationship with
its distance to the fixed point and the mean displacement it
underwent (Figure 4c). The nodes A1, K1, and K7 have the
largest error, likely because they have a higher DoF, and there-
fore underwent larger displacement (Figure S2, Supporting
Information).

Figure 3. FE model and surface approximation. a) Surface reconstruction with three approximation methods based on nine tracked nodes, indicated as
one blue triangle (fixed nodes) and eight red circles (free nodes). The displacement errors of piecewise bilinear interpolation, triangle-based nonlinear
interpolation,[30] and FE-based data enrichment are color-coded with blue, indicating a smaller error. b) Fiber strain responses of five deformation pat-
terns in FE simulation, where warmer colors indicate a higher induced strain.
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2.4. Repeatability and Hysteresis

In this test, rather than only fixing a corner, a shorter edge of the
shape sensor was clamped (Figure 4d), enabling a larger degree
of deformation along the long edge. The sensor was bent upward,
downward, then back to the neutral position, counting as one
bending cycle. The bending motion was generated by a linear

actuator driving the distal edge (nodes K1–K7) vertically, to con-
duct the sensing hysteresis test.

As shown in Figure 4e, three representative FBGs were
selected, of which the Bragg wavelength shifts were read against
the variation of distal edge displacement. Each data point was
sampled by taking an average of three bending cycles. By fitting
a curve along with those sampling points, the hysteresis could be

Figure 4. Accuracy, repeatability, and hysteresis analysis. a) Displacement error through 2700 node instances samples collected from 300 frames. b) The
corresponding RMSE of each tracked node displacement. c) Error distribution compared with the distance from the fixed point (A7) and the node
displacement. d) Setup for hysteresis and repeatability tests. The short edge of the shape sensor is clamped, with a linear actuator lifting the distal
edge vertically. e) Hysteresis plot of three FBGs A, B, and C under bending cycles (0.5 Hz), by fitting curves through sampling points. f ) Peak displacement
of the three sides, i.e., the clamped side (red), the middle line (cyan), and the distal side (green). The sensor showed high repeatability during 1000
bending cycles. Quantitative comparison of the displacement fluctuation on a logarithmic scale (right).
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measured as the disparity between the upward and downward
bending, with the shadowed region representing the 95% confi-
dence interval. Each hysteretic (or bending) cycle took around 2 s.
These disparities could be varied, depending on the FBG loca-
tions. In general, they are very small (<0.051 nm), thus implying
a low level of sensing hysteresis throughout such large bending
cycles. To evaluate the longer term sensing repeatability, the dis-
placements of three selected lines at the peak of upward motion
were calculated and shown in Figure 4f. Altogether, the results
suggest that the sensing was still promising with stable and reli-
able responses over 1000 repeated bending cycles. Again, this
repeatability could also be varied by the displacement locations.
The larger bending displacement detected by our shape sensor,
the higher its fluctuation found over such repeated cycles. The
fluctuation among those three lines of displacement nodes
can be readily comparable on a logarithmic scale. Note that
the nodes on the distal side encountered the largest fluctuation
(RMS fluctuation �1.48mm) as a result of its largest displace-
ment detected.

2.5. Underwater Test

To further demonstrate the potential of our data-driven approach,
we tested our training model in an underwater environment. A
manta ray-shaped prototype was fabricated using the same set-
tings of FBG fiber, following a similar procedure with the previ-
ous A4-sized design (Figure 4a). An optical fiber with 29 FBGs
was adhered roughly along the edges of the prototype (Figure 5a),
and its FE model is shown in Figure 5b, where the red nodes
represent the location of eight EM tracking coils for the model
training (ground truth).

The optical fiber layout for the manta ray prototype is not a
dog-bone shape, but a specific one based on its geometry.
When we were dealing with this case with irregular shape, we
did not just simply copy the fiber layout from the rectangular
one (A4-size). The middle fixture of the ray prototype has divided
the substrate into two parts such that the resulting possible sen-
sor configuration is fewer than that of the A4 size prototype.
When displaced by hydrodynamic force, the deformation

Figure 5. Shape sensing of underwater manta ray fin. a,b) Overview of the fin profile, with its FE model shown in (b). The soft fin made of silicone rubber
was moved by a vertically actuated rod, interacting with continuous hydrodynamic forces. c,d) Three different phases of deformation poses and their
corresponding shape reconstructed in real time as in (d) and Video S3, Supporting Information. Warmer the color, higher is the fiber strain induced along
the fin contour. Note that the learning model training was conducted out of water beforehand. The unnoticeable deformation asymmetry can be reflected
by its strains measured.
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magnitude and DoF of the fin edge are larger than that of the
inner region. Therefore, we adhered the optical fiber along the
edge of the manta ray prototype. Upon vertical actuation (1 Hz),
the manta ray was displaced vertically underwater. The sensing
performance of the manta ray fins can be referred to in Video S3,
Supporting Information, as well as Figure 5, where Figure 5c
shows the ray at three typical deformation instances and
Figure 5d shows their corresponding real-time shape reconstruc-
tion. The ever-changing water drag did not hinder the sensing
performance even with the model training and data-driven anal-
ysis initially conducted in the air.

3. Conclusion

In this work, we propose a sensor design framework that utilizes
FE modeling for prefabrication parameter analysis and for the
enrichment of sparse sensing data to achieve dense surface
shape reconstruction. Through this approach, FE analysis allows
us to overcome the typical requirement of having densely distrib-
uted grids of sensing elements to detect complex and
high-resolution deformation information. We demonstrate the
framework on a large (A4-sized), flexible, and thin (1mm) sur-
face shape sensor, with unprecedented sensing performance for
complicated and large-scale morphology change. The shape sen-
sor consists of a 1mm-thick silicone substrate integrated with a
single-core fiber containing 29 FBGs. Prior to fabrication, FE
analysis was used to determine shape sensor parameters,
namely, fiber placement in-depth, fiber layout pattern, and sub-
strate thickness. FE analysis provides the ability to preemptively
test the effect of modifying parameters without the need for
extensive hardware prototyping. For example, the shape sensor
parameters can be selected under intended deformation, such
that the fiber strain would not reach its maximum allowable
limit, thus protecting the fiber.

After fabrication, the shape sensor was trained through an
ensemble learning method with the aid of an FE model for train-
ing data enrichment. Only nine locations/nodes on the surface
shape sensor were used during ground truth data collection,
where simultaneously the sensor was manually deformed in a
single session (�3min). The combination of machine learning
and FE-based data enrichment greatly relaxes the number of
ground truth data needed because FE simulation could generate
accurate and densely distributed data, and eases the need for
precise fabrication and allocation of the sensing elements (i.e.,
FBGs). We also demonstrate that our FE modeling estimates
more accurate intermediate data nodes based on the nine sparse
nodes than piecewise bilinear interpolation and triangle-based
nonlinear surface interpolation for surface reconstruction. The
final trained shape sensor was able to reconstruct nodal displace-
ments with an RMSE of 2.28mm and an update frequency of
100Hz. The mean peak displacement fluctuation of the distal
side remained under 1.5 mm within 1000 repeated cycles,
demonstrating reliability with little hysteresis found. Table S5,
Supporting Information, shows that the proposed A4 shape
sensor showed a competitive performance in comparison with
some representative flexible surface sensors. A passive artificial
ray sensor was also fabricated for underwater shape reconstruc-
tion, after its learning model was trained out of the water.

This large-scale sensing framework could be applied to some bio-
inspired robots, which have large and flexible wingspan. The
FBG fiber or the sensing units could be embedded on surface
of wings to predict the morphology of the robot, thus enabling
closed-loop control.

In this work, we use sparse FBGs distributed along with a
single-core optical fiber to measure local strain. The feasibility
of this approach was also demonstrated by the shape sensing of
other geometric designs. By attaching an optical fiber spirally
to the surface of a soft continuum robot, valid 3D shape recon-
struction of the tube-like structure can be obtained.[31] This spiral
layout does not compromise the robot’s flexibility while enabling
shape sensing for closed-loop feedback. We believe this approach
of direct installation can also be applied to a range of other soft
robots.

Despite the capability in sensing and reconstructing the
changes of high-order surface bending, allowable deformation
of the presented prototype is still limited by axial stiffness of
the underlying strain sensing elements (i.e., FBGs). Therefore,
the sensing prototypes cannot tolerate the large in-plane stretch-
ing. However, with the advent of advanced stretchable sensing
elements[32–34] (e.g., pressure, temperature,[35] curvature), rather
than using optical FBGs. The gauge factor of FBG is 0.78, which
is smaller than most of the silicone rubber-based stretchable
strain sensors, for instance, 1.25[36] and 2.18.[37] The problem
caused by conventional rigid wired connections could be solved
with advances in microfluidics and flexible electronics (e.g.,
printed circuits filled with conductive liquid), which can
overcome the limitations of flexibility and scalability. From this
perspective, we believe our sensor design framework can also be
implemented to achieve further enhancedmultimodal sensing in
flexible electronics, including bending, stretching, and pressing.
As long as the local strain responses of those sensing elements
can be differentiated across deformations, the proposed learning-
based sensing framework can predict the morphological
changes. Our method contributes by reducing the number of
sensing units without sacrificing sensing capability. A sparse
array with fewer connections is sufficient to achieve accurate
real-time surface shape reconstruction, which requires denser
sensing unit distribution by conventional approach. During this
process, one indicator is the goodness-of-fit of training data,
which reveals how well the strain-displacement mapping is
regressed. In perspective of training data quality, this statistical
value helps in judging whether the model is sensitive enough to
distinguish sensor configuration.

4. Experimental Section
In this work, FBG fiber is chosen as the underlying sensing element due

to its flexibility and ability to carry a high density of small strain sensors on
a lightweight single fiber[36] with long-term stability.[37] It is worth noting
that our framework is not limited to the use of FBGs, but can also be
extended to other types of compact strain sensors proposed in the field
of flexible electronics.[38,39] However, FBGs, as a handy choice for our
framework validation, can measure high accuracy strain due to their nano-
scale gratings which reflect the laser wavelengths that match the grating
periods and transmit the remaining wavelengths. We used wavelength-
division multiplexing (WDM)-based as opposed to the more complex
and costly optical frequency domain reflectometry (OFDR)-based interro-
gation method. Although multicore and continuously written FBGs can be
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used with OFDR systems to calculate the 3D fiber curvature using analyti-
cal models, the model errors would be inevitably accumulated while apply-
ing integrals on the finite curvatures. Additional calibration and
algorithmic error cancellation are required to ensure accurate curvature
sensing. Moreover, the inherent update rate of OFDR systems[37] is usually
lower (<100 Hz) than that of WDM (>1000 Hz), which would be insuffi-
cient in applications demanding high-frequency sensing feedback. When
the grating period of an FBG is affected by axial strain, the corresponding
wavelength components could be measured by the optical interrogator.
The linear mathematical relationship between the wavelength shift Δλm
and mechanical strains εm could be expressed as

εm ¼ 1
k

Δλm
λ0m

� Δλc
λ0c

� �
(1)

where λ0c represents the central wavelength of compensation FBG, λ0m is
the central wavelength of the FBG for mechanical strain, λc and λm are the
corresponding wavelength shift, and k¼ 0.78 is the gauge factor.[40]

FE Modeling: To build a suitable FE model, the material properties of
silicone rubber substrate and optical fiber are set in FE analysis software
(Abaqus). We selected a silicone rubber with shore hardness A50, having
considered other elastomeric alternatives in terms of their intrinsic flexi-
bility and the capability to protect the inextensible optical fiber. Tensile
tests were performed to determine the elastic modulus and the material
properties of our selected silicone rubber with the use of digital image
correlation (DIC) technique.[41] We used a standard testing procedure
for rubber-like elastomer—American Society for Testing and Materials
(ASTM) D412. During the test, the specimen was stretched incrementally
at a uniaxial loading speed of 10mmmin�1, while the specimen scanning
was being conducted using a CCD camera at a frame rate of 10 Hz. By
analyzing the stress–strain curve and the displacement fields, the elastic
modulus and Poisson’s ratio were determined to be 2.192MPa and 0.393,
respectively.

The silicone rubber body was set as a linear elastic 3D deformable
part[42] and then meshed into 42� 60� 1 eight-node brick elements
(�5� 5� 1mm). Though being more computationally expensive than
the standard eight-node brick element, additional incompatible

displacement modes yield a more accurate bending response.[43] As for
the optical fiber (Ø125 μm), the elastic modulus was set to 70 GPa with
Poisson’s ratio 0.1638 and then it was meshed into 85 two-node linear 3D
truss elements (T3D2H). The geometric nonlinearity option, for small
strain and large displacement, was chosen in the FE analysis. To simulate
the sensor responses under varying loading conditions, one corner of the
sensor was prescribed with the clamped condition while the rest is free.
The fiber part was tied to the substrate surface with node region-to-surface
constraint, and all FE simulations were done under static loading steps.

Sensor Design Parametrization: In the prototyping process, we investi-
gated three important parameters using our FE simulation, namely, fiber
placement in-depth, fiber layout pattern, and sensor thickness. Upon the
FE analysis in our previous study,[19] the fiber strains magnitude would
increase with its distance l from the neutral (middle) plane according
to Kirchhoff plate theory, as shown in Figure 6a. To enhance sensitivity
and minimize the sensor thickness, the fiber is positioned right below
the surface plane. The off-center placement also guarantees the capability
to distinguish bidirectional bending (Figure 6b), which could not be
achieved if placing fiber at the neutral plane.[44]

The fiber layout pattern determines the distribution of FBG sensors,
thereby substantially affecting the sensing capability of various morphol-
ogies. We proposed a dog-bone shape layout (Figure 2) with reference to
similar designs,[17,45] and compared its strain response with two other
primitive layouts, e.g., an ellipse and rounded rectangle (Figure S3,
Supporting Information). Altogether, three typical sensor deformations
were performed for our quantitative analysis in FE simulation. FBGs allo-
cated in the dog-bone shape could cover close to the sensor regions
involving a relatively higher degree of bending, such as the four corners
and the central area of the A4-sized sensor. The dog-bone layout showed a
smaller peak-to-peak strain range, which implies its potential to bear larger
and more complicated deformation. The sensor thickness t would directly
influence its flexibility, and it was decided by comparing a spectrum of
thicknesses (0.2–4mm), where the range is selected to avoid inhibiting
the sensor or motion flexibility. The strain response pattern shown in
Figure 6c is similar within the chosen thickness range, while the magni-
tude increases with the thickness. In addition, increasing the substrate
thickness would result in the decrease in the flexibility of the sensor

Figure 6. Sensor parameter analysis with FE simulation. a) A single-core fiber is adhered to silicone rubber with total thickness t under simple bending.
The fiber is positioned away from the neutral plane with distance l. b) Simulated strain response of the FBGs when the free side of the sensor is bent with
displacement d ranges from –80 to 80mm. c) Simulation to compare the strain response of FBGs with thickness t, ranging from 0.2 to 4mm.
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(e.g., the minimum bending radius). To strike a balance between flexibility
and sensitivity, 1 mm thickness was finally chosen in our work.

Once the fiber layout and thickness were determined, the sensor was
then fabricated using a 1mm silicone rubber substrate with a hardness of
Shore A50. A silicone adhesive (ELASTOSIL E41) is used to adhere the
optical fiber and silicone rubber substrate. Each FBG has a length of
6 mm, with the spacing between adjacent FBGs being 22mm for the first
28 FBGs. The 29th FBG is located 450mm from the 28th FBG for the pur-
pose of temperature compensation (Figure S4, Supporting Information).
The fiber was tightly adhered to the substrate so that it can measure the
surface strain of the substrate. The sensor prototype can be seen in Video
S4, Supporting Information. Although the FBG distribution does not
directly cover the entire shape sensor surface, any local deformation occur-
ring at the corner or the edge will generate strain responses in individual
gratings proximal to the deformation location. When provided with larger,
nonlocal deformations, it is expected to generate global strain responses.

During the fabrication process, it is challenging to precisely position the
FBG sensors on a designated path due to the fiber thinness and translu-
cence. This fabrication error would pose challenges to kinematics model,
and also demand additional calibration steps for error compensation, par-
ticularly with an irregular fiber layout. Therefore, we introduce a data-driven
method to train the mapping from the sparse strain data to the dense
morphology, but without prior knowledge regarding the actual location
of FBGs along the elastomer surface.

Ensemble Learning Configuration: To reconstruct the surface morphol-
ogy, a unique model mapping from the sparse strain data to surface defor-
mation is needed. Conventional mathematical methods, in general,
require highly accurate sensor fabrication or error compensation steps
and can become exceedingly complex for high-dimensional problems such
as morphology reconstruction. In contrast, data-driven methods such as
machine learning approaches are suited to systems with modeling
problems that are nonlinear, impractical, or impossible to represent
analytically.[3,46,47] In our work, a mapping from sparse strains to dense
displacements is formulated and regressed by a data-driven model.
This approach bypasses the requirement for precise fabrication processes,
allowing for the use of unique and irregular fiber layouts and FBG alloca-
tions, overall providing greater freedom in sensor customization and
design. Namely, our approach leverages the use of sliding windows
and ensemble learning to improve predictive performance while maintain-
ing high-frequency calculation for such a high-dimensional regression
problem.[48,49]

In this A4-sized prototype, we divided the rectangular sensor surface
into multiple smaller rectangular regions/windows with fixed width and
height (Figure 2), where the nodes inside the same window would have
a strong spatial correlation. Each window had an individual submodel and
covered the same amount of output nodes, and some nodes were
included in multiple regions. Each submodel (ANN-based predictor)
was responsible for processing the surface nodes inside the correspond-
ing window, with all submodels sharing the same input data, i.e., all of the
strain data (Video S5, Supporting Information). The overlapped region of
windows would result in multiple calculations of some nodal data, thus
enhancing the prediction robustness. In addition, by dividing the surface
into smaller regions, the spatial correlation between adjacent points under
continuous deformation could be leveraged, resulting in higher prediction
accuracy. Finally, a complete model can be ensembled upon the weighted
voting results of all independent regressors.[50–52]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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