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Longitudinal changes in cortical function are known to accompany motor skills learning, and can be detected
as an evolution in the activation map. These changes include attenuation in activation in the prefrontal cortex
and increased activation in primary and secondary motor regions, the cerebellum and posterior parietal cor-
tex. Despite this, comparatively little is known regarding the impact of the mode or type of training on the
speed of activation map plasticity and on longitudinal variation in network architectures. To address this,
we randomised twenty-one subjects to learn a complex motor tracking task delivered across six practice ses-
sions in either “free-hand” or “gaze-contingent motor control” mode, during which frontoparietal cortical
function was evaluated using functional near infrared spectroscopy. Results demonstrate that upon practice
termination, gaze-assisted learners had achieved superior technical performance compared to free-hand
learners. Furthermore, evolution in frontoparietal activation foci indicative of expertise was achieved at an
earlier stage in practice amongst gaze-assisted learners. Both groups exhibited economical small world topology;
however, networks in learners randomised to gaze-assistancewere less costly and showed higher values of local
efficiency suggesting improved frontoparietal communication in this group. We conclude that the benefits of
gaze-assisted motor learning are evidenced by improved technical accuracy, more rapid task internalisation
and greater neuronal efficiency. This form of assisted motor learning may have occupational relevance for high
precision control such as in surgery or following re-learning as part of stroke rehabilitation.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Neuroergonomics is the study of the brain and behaviour at work
(Parasuraman, 2003) and describes the application of neuroscience
methodology to better understand the cortical correlates of work-
related tasks. In this context, neurocognitive behaviour can be
appraised as a means to evaluate training regimes (Voss et al., 2012),
detect hypovigilance and fatigue (Hitchcock et al., 2003; Leff et al.,
2010), and to evaluate the impact of assistive technologies on the user
(James et al., 2010; Tsunashima and Yanagisawa, 2009). Translational
applications of neuroergonomic research include the development of
technological assistance for adaptive aiding in safety-critical industries
such as aeronautics (Rossini et al., 2009), driving (Tsunashima and
Yanagisawa, 2009) and surgery (James et al., 2010; Lee et al., 2010), as
well as to improve stroke rehabilitation regimens (Moller and Mikulis,
rtex; fNIRS, functional near in-
elling; HbO2, oxyhaemoglobin;
e R-R interval; STAI, state trait
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2007). Although plastic changes in cortical activation associated with
highly complex motor skills learning in healthy subjects have started
to be mapped (Bahrami et al., 2011; James et al., 2011; Leff et al.,
2006, 2008a, 2008b, 2008c; Ohuchida et al., 2009; Zhu et al., 2011),
the impact of performance enhancing technology on activation-map
evolution and functional connectivity adaptation have yet to be delin-
eated. Accordingly, the objective of the present study is to investigate
the impact of assistive technology on dynamic changes in functional
network architectures associated with the longitudinal acquisition of a
complex visuomotor tracking task, designed to emulate ablation on a
beating heart phantom.

Regarding complex motor skills acquisition per se, task learning is
associated with neuroplastic changes that lead to either up-regulation
or down-regulation of regional brain activation (Kelly and Garavan,
2005) and a modulation of the underlying cortical network from a
novice to expert state (Halsband and Lange, 2006). Longitudinal
changes in regional brain activation commensurate with skills acqui-
sition are well described (Kelly and Garavan, 2005). In the main these
comprise response attenuation in the prefrontal cortex (PFC) and
increased activation in primary and secondary motor regions and
the cerebellum consistent with a re-distribution or re-organisation
of the activation map (Debaere et al., 2004; Floyer-Lea and Matthews,
2005; Kelly and Garavan, 2005; Leff et al., 2008b; Puttemans et al.,
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2005). In contrast, little is known about the variations in the interac-
tions between brain regions (nodes) as a result of practice or for that
matter as a result of interventions designed to augment learning and
enhance accuracy. Yet changes in statistical association between spatially
distributed brain activation time series, or “functional connectivity,”
(Friston et al., 1993)may hold great promise in understanding individual
differences in neural efficiency and learning capabilities (Posner, 2012;
Voss et al., 2012).

Only a few motor learning studies suggest that functional connec-
tivity varies from novice to learned states (Coynel et al., 2010; Lin et
al., 2012; Steele and Penhune, 2010; Sun et al., 2007). These data sug-
gest that early phases of motor learning are associated with greater
connectivity within frontal regions compared to late phases (Sun et
al., 2007) and that changes in network integration (Coynel et al.,
2010) and modular flexibility (Bassett et al., 2011) accompany skills
learning. However, variation in connectivity is likely to be dependent
on the brain regions of interest and strengthening of connectivity be-
tween motor regions (e.g. cerebellum and primary motor cortex) has
been observed (Lin et al., 2012; Steele and Penhune, 2010). These stud-
ies applied a unique training regimen andwere not designed to charac-
terise differences in network behaviour(s) as a result of alterations in
training regimens or modes of learning. For high risk industries in
which motor skills acquisition and performance accuracy are integral
to public safety (e.g. aviation, surgery, etc.) it is attractive to compare
the influence that tailored training regimens and technologies
designed to assist learning have on the speed of skills acquisition, evo-
lution in regional activation(s) and efficiency of brain networks. The
present study investigates the influence of two different motor training
methodologies (i.e. “free-hand” versus “gaze-assisted”) on practice re-
lated evolution in functional activation(s) and network architectures.
To this end, functional near infrared spectroscopy (fNIRS) was used to
capture regional cortical activation. Optical data were subsequently
analysed using graph theory, enabling integration between spatially re-
mote neurophysiological events in the brain to be evaluated.

A brain graph is a model of the nervous system composed of nodes
interconnected by edges (Bullmore and Bassett, 2011). “Nodes” may
represent sensors or electrodes (e.g. MEG and EEG), individual voxels
(van den Heuvel et al., 2008, 2009), cortical volumes (Bassett et al.,
2008) or anatomical regions of interest (Chen et al., 2008; He et al.,
2007) (e.g. MRI). Concerning neuroimaging data acquired using fNIRS,
nodes may represent optical data acquired at different cortical loci
(“channels”). Network “edges” are calculated by generating an associa-
tion matrix. This matrix is a measure of functional or structural connec-
tivity between the nodes (Bullmore and Bassett, 2011). The association
matrix is pruned by application of a threshold to retain themost impor-
tant functional connections, thereby generating an adjacency matrix.
Network econometric data that explore the interactions between
brain regions such as clustering coefficient, path length, density and
small worldness can be derived from the pruned adjacency matrix. It
is then possible to compare graph econometric data between subjects
or groups, or to an equivalent “random graph” in order to derive the
extent of network small-worldness (Watts and Strogatz, 1998). Al-
though graph comparison is a challenging area of research (van Wijk
et al., 2010) and care needs to be taken to ensure that networks are of
equal connection density and node number (Bullmore and Sporns,
2009; Bullmore and Bassett, 2011; Rubinov and Sporns, 2010; van
Wijk et al., 2010) it is an attractive method to quantify longitudinal
variation in neuronal architectures induced by different training
methodologies.

This longitudinal randomised controlled study aims to assess the in-
fluence of different learning strategies on the evolution in frontoparietal
(F-P) activation and F-P network communication. Subjects were
randomised to acquire a dynamic visuomotor tracking skill in either
“free-hand” mode or following “gaze-contingent motor channelling”
(GCMC) (Mylonas et al., 2012) in which motor/instrument control is
constrained according to operator gaze fixation as displayed in Fig. 1.
Changes in F-P cortical haemodynamics were monitored using fNIRS.
Graph theory was applied to cortical haemodynamic data in order to
capture the extent of small-worldness of the task-evoked cortical
network and to determine if gaze-assistance results in enhanced neuro-
nal efficiency. The current study was based on three hypotheses:

(i) First, longitudinal evolution in F-P brain activation is anticipated.
PFC attenuation is predicted, co-incident with motor skills learn-
ing and consistentwith reduced attentional demands that accom-
pany task acquisition (Debaere et al., 2004; Floyer-Lea and
Matthews, 2005; Kelly and Garavan, 2005; Leff et al., 2008a,
2008b; Petersen et al., 1998). Localisation of the parietal response
to the posterior parietal cortex (PPC) is anticipated commensu-
rate with development of an internal model of task performance
(Shadmehr and Holcomb, 1997).

(ii) Second, a small-world F-P network is predicted which may be
modulated with learning-related changes in technical skills
acquisition (Coynel et al., 2010; Sun et al., 2007). Small world re-
fers to a network topology characterised by high clustering coef-
ficient and short mean pathlength resulting in low wiring cost
and high information processing capabilities. Specifically, corti-
cal networks demonstrate “small-world” properties (Achard et
al., 2006; Bassett and Bullmore, 2006; Watts and Strogatz,
1998), which are characterised by high local connectivity or
cliquishness coupledwith long range connections linking distant
network regions (Watts and Strogatz, 1998). Small-worldness is
indicative of the brain's capacity for local processing (functional
segregation) coupled with an ability for multi-regional commu-
nication, integral for task execution (functional integration)
(Sporns et al., 2004; Tononi et al., 1998)

(iii) Third, it is envisaged that learning-related evolution in F-P activa-
tion(s) and network architecture may progress more rapidly to
the trained state in gaze-assisted learners, since GCMC stabilises
user performance andmay result in earlier attainment of technical
expertise. Finally, network econometrics have been shown to
predict superior performance (Bassett et al., 2009); thus it is
conceivable that gaze-assistance, in augmenting technical perfor-
mance, will result in an F-P network architecture defined by
reduced costs and greater efficiency.

Materials and methods

Subjects

Following local research ethics committee approval (project number:
05/Q0403/142), a randomised single blinded trial was conducted.
Twenty-one subjects (six female) with no prior nor current history
of neuropsychiatric conditions were recruited from Imperial College
London [Mean age±S.D.=21.2±2.4 years]. Subjects were right
handed [Edinburgh handedness inventory (Oldfield, 1971), median
score (range)=70 (40–100)]. Subjects gave written consent prior to
participation. All participants were task naïve. Exclusion criteria includ-
ed a history of neuropsychiatric illness, left handedness or prior task ex-
perience. Subjects were required to refrain from alcohol and caffeine for
24 hours prior to eachdata collection point, in order to eliminate any ef-
fects on cerebral haemodynamics during the study (Orihuela-Espina et
al., 2010).

Group allocation and task paradigm

Subjects undertook the virtual reality visuomotor task by tracking
a moving target on the monitor using a haptic manipulator (SensAble
Technologies, USA) to control a virtual tool with the aim of localising
the moving target as accurately as possible as outlined in Fig. 1. Target
trajectory was smooth and cyclic. Subjects were randomised (random
number generator) to perform the task either “free-hand” in the



Fig. 1. Task setup. Panels a to d display the task set up and the mode of action of GCMC. Subject is seated and controls the haptic manipulator (right hand) which operates the virtual
tool (yellow). Subject gaze behaviour (depicted as white cross, however not visible to subject) is detected with the portable eye tracking system (beneath the monitor) whilst they
track the target (black dot) which has a smooth, cyclic trajectory (schematically displayed as light blue ellipse in panel (a). Subject gaze and the relationship of the tool tip to the
haptic manipulator are schematically represented (dashed green and red lines respectively). In panel b, the distance (d) between subject fixation point and the tool tip is calculated
and utilised to determine the force (F) required to constrain the tool to the fixation point and thus the target. Therefore the force (F) is a function (f) of the distance (d) between the
tool tip and the fixation point. The target is localised with the tool (panel c) and tracked successfully as the target moves (panel d). Optode arrays can be appreciated on the subject
which capture cortical haemodynamic behaviour at 12 channel locations overlying the left PFC and PC respectively. Channel location overlain onto a reference MRI atlas is displayed
(lower panel) for the PFC (i) and PC (ii). Optode emitters and detectors (red and blue circles respectively) are positioned according to the U.I. 10/10 system (Jurcak et al., 2007)
generating 24 channels (numbered yellow circles).
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conventional manner (control group) or with gaze-assistance with
GCMC (experiment group) (Mylonas et al., 2008, 2012). Subjects
randomised toGCMCassistance performed the task in the samemanner
as free-handwith the exception that their gaze behaviourwas extracted
in real time using a portable eye tracker (Tobii, Sweden) situated below
the taskmonitor. This information was used to guide force feedback via
the haptic manipulator in order to constrain the subject's hand to their
fixation point and thus to the target. This technology has been demon-
strated to improve technical accuracy beyond that of free-hand perfor-
mance (Mylonas et al., 2008, 2012).

A block design paradigm was employed with each “session” com-
prising five blocks of task (20s) interspersed with rest (30s) during
which subjects closed their eyes and the screen was blacked out. As
the purpose of this study was to assess longitudinal practice-related
changes in brain behaviour, subjects repeatedly performed the task on
six separate days, resulting in six sessions per subject. A pilot study
(unpublished data) determined six sessions to be sufficient to demon-
strate learning of the task. All participants received a standardised intro-
duction which precluded any opportunity to practice, ensuring that the
most naïve phase of learning was captured. Subjects were blinded to
group assignment and to the study objectives. Approximately 2 months
after the original test, subjectswere recalled for a retention test (session
7) to evaluate skill retention.

Data acquisition and pre-processing

Performance was determined as the distance (pixels) from the tool
tip to the target and was averaged over the five blocks of the task to
yield a session average. Based upon pilot data the study was powered
to detect a difference of 1.5 SD in technical performance between
groups at α=0.05 and 90% power, which required eleven subjects in
each group.

As depicted in Fig. 1, left hemispheric F-P activity in terms of relative
changes in oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb)was
detected at 24 channel locations with fNIRS (ETG4000, Hitachi Medical
Corp., Japan). Attenuation of light data was converted to relative
changes in HbO2 and HHb using the modified Beer–Lambert law and
subsequently decimated to 1 Hz and linearly detrended prior to under-
going data integrity checks as previously described (Orihuela-Espina et
al., 2010). Simultaneous heart rate (HR) recordingwas undertakenwith
a portable electrocardiogram (Bioharness, Zephyr Technology, USA). HR
datawere used to derive the heart rate variability (HRV) in terms of the
standard deviation of the R-R interval (SDRR) (Taskforce, 1996) as a
surrogate for systemic effect and task-induced stress. Concurrently,
subject stress was determined with the State Trait Anxiety Inventory
(STAI) (Marteau and Bekker, 1992) in order to determine the influence
that the systemic circulation and autonomic arousal had upon changes
in cortical haemodynamics.
Behavioural data

The influence of group and session on technical performance was
determined with a univariate analysis of variance and a post hoc
Bonferroni correctionwas applied (SPSS v18, USA). Performance at prac-
tice termination (session 6) was comparedwith that attained during the
retention test (Wilcoxon rank sign) to assess the degree of task retention
and hence learning.
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Cortical activation and stress

A within-group activation analysis was conducted upon grand-
averaged data as follows: for a givenNIR channel, baseline haemoglobin
data (defined as 5s of data prior to stimulus onset) were compared to
task data (defined as data acquired duringmotor trackingperformance)
using a Wilcoxon rank sign test. For a given NIR channel, the combina-
tion of a statistically significant increase in HbO2 (pb0.05) coupled to a
statistically significant decrease in HHb (pb0.05) was used to define
cortical activation. Subsequently, a variable defined asΔHbwas derived
for eachHb species and for each channel of data, calculated as the differ-
ence between the task and baseline data. ΔHb data were incorporated
into a generalised estimation equation with random effect modelling
(Intercooled Stata, v10.0 for windows, Stata Corporation, USA) in
order to appreciate the influence of group (control versus experimen-
tal) and practice session (1–6) on the task-induced changes in cortical
haemodynamics. Similarly, generalised estimation equation with ran-
dom effect modelling was conducted to evaluate the influence of
the stress response (i.e. HR and SDRR) on cortical haemodynamic data
(i.e. ΔHb) whilst controlling for other variables that may influence the
cortical response such as subject, group and practice session. The influ-
ence of group (control vs. GCMC), session (1–6) and timing (pre-,
during and post-study) on STAI questionnaire response was deter-
mined with a univariate analysis of variance and a post hoc Bonferroni
correction was applied (SPSS v18, USA).

Graph construction

Graph construction is outlined in Fig. 2. Group averaged
haemodynamic data were derived at each session (1–6). The group
averaged timecourse was then cross-correlated in order to generate a
functionally connected unweighted, bidirectional graph. Bidimensional
cross-correlation Ri,j(τt, τHb) was utilised as shown in Eq. (1) such
that both changes in HbO2 and HHb were simultaneously considered
in determining the functional association between two channels,
where τt and τHb represent the temporal and haemodynamic lag
among the signals and subscripts Hb only refer to the haemodynamic
signal index and t to the temporal sample index with T being the
length of the signals in samples. Over lined symbols represent mean
signal value.

Ri;j τt ; τHbð Þ ¼ ∑τ−1
t¼0 ∑

2−1
Hb¼0ΔHbi t;Hbð Þ·ΔHbj t þ τt ;Hbþ τHbð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑τ
t¼1∑

2
Hb¼1ΔHbi t;Hbð Þ2·∑τ

t¼1∑
2
Hb¼1ΔHbj t;Hbð Þ2

q

ð1Þ

The association matrix of the graph is subsequently pruned based
according to graph connection density to generate the final network,
rendering only those edges that will remain in the graph. Too
lenient a threshold may result in retention of edges describing spu-
rious associations between cortical regions and that do not truly
represent functional connections. However, too aggressive a thresh-
old may result in the rejection of meaningful cortical connections,
under population of the graph and/or node isolation making graph
comparison problematic (Bullmore and Bassett, 2011; van Wijk et
al., 2010).

In order to rationalise the resultant econometric data, a network
from each study group at each practice session was formed leading
to 12 graphs in total. The graphs were scaled to ensure equivalent
connection densities, thereby facilitating graph comparisons (van
Wijk et al., 2010). The connection density was fixed and edges were
sequentially removed according to the significance of the functional
association (least significant removed first) until the desired connec-
tion density was reached (Achard et al., 2006; He et al., 2007).
Graph theory metrics

In order to determine small-worldness, each graph was compared
to its equivalent random graph (vanWijk et al., 2010). This was calcu-
lated by randomly rewiring the graph as previously described (Watts
and Strogatz, 1998). Here the regular graph is built by linking each
node (channel) with its topological neighbours in the optode array.
From both the session and group specific graphs and the equivalent
random graphs, the average pathlength L and Lr and average cluster-
ing coefficient C and Cr were calculated. This in turn was used to cal-
culate the small-world index, σ as shown in Eq. (2) (Bullmore and
Bassett, 2011).

σ ¼ C
Cr

=
L
Lr

ð2Þ

Network cost K(G) and global efficiency Eglob(G) were calculated
using Eqs. (3) and (4). The cost-efficiency of a network is increased
in an economical network (Achard and Bullmore, 2007) and therefore
is calculated using Eq. (5) and termed “network economy.” At a fixed
connection density, the number of connections linking the prefrontal
and parietal channels was calculated in order to estimate the connectiv-
ity between these regions where i and j represent nodes in the graph.

K Gð Þ ¼ ∑
i∈G

∑
j∈G

dij i≠jj ð3Þ

Eglob Gð Þ ¼ 1
N N−1ð Þ∑i∈G

∑
j∈G

1
dij i≠jj

ð4Þ

(Latora and Marchiori, 2003)

Economy Gð Þ ¼ Enormglob Gð Þ−Knorm Gð Þ ð5Þ

(Achard and Bullmore, 2007)

Results

One subject withdrew from the study after the second session and
two of the remaining subjects were unable to return for the retention
test. The six sessions were undertaken on separate days over a medi-
an of 8 days. Following data integrity assessments (Orihuela-Espina
et al., 2010) a number of channels (127 out of a total of 2880 chan-
nels, 4.4%) were excluded due to system noise or artefacts. If a single
channel was excluded, the remaining data for that subject/sessionwere
still included in the analysis. Unlike previous attempts at employing
graph analysis for fNIRS (James et al., 2010), the current approach en-
sures the maximum retention of individual subject data for group net-
work construction.

Behavioural data

Performance as determined by the distance from the tool tip to
the target is illustrated in Fig. 3. It is apparent that accuracy increases
with time on the task, manifest as a diminution in this distance
across training. Session (pb0.001 df=5, F=60.65), but not group
(p=0.52 df=1, F=0.41) was observed to be a predictor for task
performance. These predictors explain 36.1% of the variation in per-
formance (R2=0.361). Whilst accuracy was observed to be better in
the control group initially, the learning curves intersect after the sec-
ond session as GCMC learners improve to a greater extent than do
controls. Therefore, group alone does not predict performance unless
session is concurrently accounted for. Eighteen subjects returned for
the retention test at a variable time period following final practice
[median (range)=71 (21–116) days]. Despite the variation in the



Fig. 2. Flow of data analysis and graph construction. Following pre-processing and conversion to relative changes in HbO2 and HHb, haemodynamic data are averaged across the five
task blocks and over all subjects in each group for each session. This yields a grand averaged timecourse (1). The five sample baseline is compared with the task-averaged Hb value
in order to determine task-evoked increases/decreases in HbO2 and HHb. This is subsequently displayed overlying channel locations on a reference MRI atlas (a). For graph gener-
ation, both Hb species in the grand averaged time course are bidimensionally cross-correlated in order to generate the association matrix (2). In turn, this is pruned to generate the
adjacency matrix (3) using the threshold. In the current study, the association matrix is pruned according to the connection density of the graph with least significant connections
removed first. From the adjacency matrix (3), the undirected, weighted cortical network (4) is generated. Graph econometrics such as network cost, efficiency and economy can be
subsequently derived.
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timing of the retention test, performance during retention was not
significantly different from that during the final training session in
either group [control group accuracy (median (range)): final ses-
sion: 22.0 (15.4–36.2) vs. retention test: 22.9 (13.9–32.3); p=
0.4307]; [GCMC group accuracy (median (range)): final session:
16.8 (10.9–38.0) vs. retention test: 15.84 (11.9–23.9); p=0.9404].
This indicates retention of skill at a median of 71 days.

Cortical activity

Fig. 4 illustrates between-group longitudinal changes in cortical
activation associated with technical skills acquisition. Naïve perfor-
mance (first session) was associated with PFC and parietal cortical
(PC) activation, regardless of study group allocation. However,
rapid attenuation in PFC and PC activation was only observed in the
GCMC group. In contrast, after limited practice (session 3) persistent
PFC activation (channels 14, 16 and 21–23) and spatially broader PC
activation were observed in subjects randomised to free-hand learn-
ing. Attenuation in PFC and PPC activation only occurred toward
practice termination (session 6) in unassisted learners. Longitudinal
learning-related changes in parietal excitation comprised a spatial
contraction in the number of activating channels within the PPC.
However, residual activation in the PPC appeared to be magnified.
Longitudinal changes in PC activations transpired more swiftly in
gaze-assisted learners. As displayed in Table 1, session and cortical
region (PFC versus PC) were independent predictors of ΔHbO2. Addi-
tionally, ΔHbO2 decreased as the sessions progressed, implying an
overall attenuation in the magnitude of the cortical response across
practice. Relative to the PFC, a greater cortical response was seen in
the PC, which is in line with PFC attenuation and magnification of PPC
excitation. “Group”was not an independent predictor of changes in cor-
tical haemodynamics. Therefore, differences in cortical haemodynamics

image of Fig.�2


Fig. 3. Subject performance across six task sessions and the retention test (session 7,
which occurred a median of 71 days after session 6). Data represent mean and 95%
confidence intervals (error bars) for subjects in control (blue) and GCMC (red) groups.
Initially, performance is better in the control group until the learning curves intersect
after the second session. Subsequently, GCMC users demonstrate improved perfor-
mance. There is no significant difference between performance at practice termination
(session 6) and the retention test (session 7), indicating task learning.
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were mediated by temporal fluctuations across sessions and modula-
tion according to cortical region (PFC versus PC).

Cortical networks and small-world properties

As is depicted in Fig. 5 cortical network econometric data (i.e. cost,
efficiency, economy, etc.) are strongly influenced by the stage and
mode of learning. Econometric data of average clustering (C) and
mean pathlength (L) are displayed in Table 2. These are normalised
according to the equivalent random graph (Watts and Strogatz,
1998) and are used to calculate the small-world scalar: σ. It is evident
that normalised global efficiency, normalised cost and economy of the
F-P network are improved as a result of gaze-assisted motor learning.
This implies that gaze-assisted learners developed a pattern of F-P
network communication that was more efficient and less costly
than that of free-hand learners. Small-worldness behaviour is indicat-
ed when σ>1 and was observed in all practice sessions apart from
the final in both groups. The loss of small-worldness may relate to
an increase in mean pathlength coinciding with a simultaneous
reduction in the number of functional connections between the PFC
and PC in the final session in both groups (Table 2). Moreover, final
session PFC redundancy is evident from the activity-related analysis
(refer to Fig. 4). It is conceivable that as activity within the PFC atten-
uates, its functional association with the PC may well decrease, espe-
cially since activations in the PPC are magnified. This effect occurs in
tandemwith a trend towards a reduction in network efficiency, econ-
omy and an increase in cost towards the final session accompanied by
the loss of small-worldness.

Systemic effect, and stress

Mean heart rate was not a predictor for variation in ΔHbO2

[coefficient=0.006, confidence interval (−0.003 to 0.015), p=
0.163] or ΔHHb [coefficient=0.004, confidence interval (−0.001
to 0.009), p=0.158]. However, SDRR was a predictor for ΔHbO2

[coefficient=0.027, confidence interval (0.016 to 0.037) pb0.001].
With regard to the STAI questionnaire, group (pb0.001 df=1, F=
20.34) and timing (pre-study period, task period and post-study pe-
riod) (p=0.006 df=2, F=5.21) were predictors of a change in STAI
questionnaire response. These predictors explain 13.9% of the varia-
tion in STAI response (R2=0.139). Post hoc analysis demonstrated a
significant reduction in subjective stress (increase in STAI) in the
post-study period compared to task period [STAI response median
(range) as follows: task period=21 (12–24) vs. post study period=
23 (13–24), p=0.003]. Practice session was not a predictor for change
in STAI responses (p=0.07 df=5, F=2.07). Critically, this means
that HR was not a predictor of changes in cortical haemodynamics
and subjective stress (STAI responses) was stable across practice ses-
sions and therefore unlikely to be solely responsible for dynamic
changes in brain behaviour. Moreover, the contribution of stress to
changes in cortical haemodynamics, if at all, may manifest through
HRV dependent influence on changes in HbO2 alone.

Discussion

In the present study, a neuroergonomic paradigm has been
employed in order to investigate left F-P cortical activity as subjects
acquire a simulated surgical task with and without robotic assistance
in the form of gaze-contingent channelling. fNIRS was utilised to
detect local changes in cerebral haemodynamics associated with
brain activation. The primary findings are that gaze-assisted motor
learning leads to improvements in technical skill, more rapid evolution
in regional cortical activation indicative of task internalisation, and a
more efficient/economical F-P network architecture than free-hand
learners.

Additionally, we have observed a loss of small worldness toward
practice termination regardless of the mode of learning. There are a
number of possible explanations/hypotheses that may account for
learning related escalations in network costs, reduced network effi-
ciency and the loss of small world behaviour at practice termination
observed in both GCMC and control groups: (1) the relative PFC
redundancy coupled to enhanced PPC activation at practice termi-
nation means that functional correlations are likely to be weaker
at the end of practice than at the beginning. In the present study,
this is evidenced by a reduction in the number of connections between
frontal and parietal regions. Simultaneously, the network pathlength in-
creases and in so doing reduces the small world index. (2) Technical ac-
curacy in both study groups appears to be continuing to improve and
subjects' performance has yet to reach asymptote. It is possible that
had we continued to study subject's beyond six trials conceivably longi-
tudinal improvements in F-P network efficiency along with a return to
small worldedness may have been observed. (3) Finally, longitudi-
nal changes in network architectures are challenging to contextualise
given the lack of motor learning studies that specifically and systemati-
cally address longitudinal plasticity in cortical networks evaluated
using graph theory.

These results exhibit congruity with established theory of learning
related neuroplasticity which suggests that expertise development is
associated with attenuation in PFC activity (Kelly and Garavan, 2005;
Leff et al., 2008a; Petersen et al., 1998; Puttemans et al., 2005). One
theory is that attention and control centres in the PFC are necessary to
support novel task demands during unskilled, effortful performance but
are no longer necessary and subsequently “pruned” as a result of
practice-dependent changes in executive control (Petersen et al., 1998).
The residual PPC activity is indicative of the development of an internal
model of the task (Shadmehr and Holcomb, 1997), dynamic monitoring
of arm movements (Mulliken et al., 2008) and sensorimotor integration
(Buneo and Andersen, 2006; Buneo et al., 2002). Therefore, longitudinal
redistribution of activation comprising PFC down-regulation and PPC
up-regulation suggests expertise acquisition, development of an internal
model of the task and residual reliance on the PPC for effective spatial
transformations between gaze-detected targets and precise motor
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Fig. 4. Groupwise statistical analysis of longitudinal changes in cortical activity across sessions 1, 3 and 6 for control (left) and GCMC (right) subjects. Approximate channel locations
are indicated by colours representative of the pattern of activity: (a) ΔHbO2 increase and coupled ΔHHb decrease (both species reaching significance); (b) ΔHbO2 increase and
coupled ΔHHb decrease (one species reaching significance); (c) ΔHbO2 increase and coupled ΔHHb decrease (neither species reaching significance); (d) no paired increase in
ΔHbO2 decrease in ΔHHb. Attenuation in PFC activity and focussing of activity within the PPC can be appreciated.

Table 1
Influence of subject group, cortical channel, practice session and cortical region (PFC vs.
PC) on ΔHbO2.

HbO2 Variable Coefficient s.e. z p>z 95% C.I.

Group 1.796423 1.111874 1.62 0.106 −0.3828089 to
3.975656

Channel −0.016795 0.0306889 −0.55 0.584 −0.0769442 to
0.0433541

Session −0.2314645 0.053448 −4.33 0.000 −0.3362207 to
−0.1267083

Region 2.344992 0.4362594 5.38 0.000 1.489939 to
3.200045

Constant 2.267051 1.699034 −1.33 0.182 −5.597097 to
1.062994

σu 2.4616349
σe 11.228495
rho fraction
of variance
due to uj

0.04585821
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tracking. The greater attenuation in PFC excitation observed inGCMCver-
sus free-hand learners may also reflect the influence of saccadic activity
on the magnitude of excitation within frontal eye-fields. Generation of
saccades (Schall, 2002) and corrective saccadic behaviour (Murthy et
al., 2007) have both been demonstrated to lead to activation in the frontal
eye field, a region located in the PFC. Saccadic cross-referencing between
the tool-tip and target is likely to be more prominent in free-hand
learners comparedGCMC learnerswho by definitionwere required to re-
gard the target in order to aid tool localisation. Therefore, it is conceivable
that gaze-assisted visuomotor control ameliorates some of the prefrontal
burden on the operator by reducing saccadic related activation.

It is important to appreciate variation in cortical network behav-
iour in order to better understand learning-related changes in brain
integration associated with skills acquisition. Evidence suggests that
modular flexibility within a network may predict subsequent perfor-
mance whereas activation changes alone may not (Bassett et al., 2011).
The findings in the current study are in line with other research demon-
strating reduced connectivity between the PFC and other brain regions
in conjunction with motor task learning (Sun et al., 2007) and reduced
cortical network integration with time on task (Coynel et al., 2010).
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Fig. 5. Cortical network econometrics for control (blue) and GCMC (red) subjects across the 6 task sessions. It can be appreciated that network economy and efficiency is improved
with GCMC and network costs are reduced. The small-world index is greater with GCMC and both groups display a small-world index >1 until the final session. Efficiency, economy
and the small-world index display a decreasing trend across the six sessions and cost increases. This occurs in tandem with attenuation in PFC activation.
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However, unlike the training protocols in these studies which assessed
network behaviour at only two (Sun et al., 2007) or three time points
(Coynel et al., 2010), the current study assessed cortical network behav-
iour at every practice session. A more comprehensive analysis such as
this enables practice-related changes in brain behaviour to be delineat-
ed more precisely. Moreover, the current approach enables practice-
related changes in brain behaviour to be contrasted between two differ-
ent modes of task learning, and therefore may determine the optimal
mode based uponneuronal efficiency. In this study, subjects performing
with gaze-assistance were more accurate at learning termination, and
demonstrated more rapid activation map plasticity manifest as PFC
attenuation and magnification of PPC excitation.

Analyses of dynamic changes in functional cortical networks may
afford an improved understanding of the impact of different training
regimes on task learning (Voss et al., 2012). One application of graph
analysis, as in the current study, is in determining the optimal learn-
ing strategy from the perspective of network cost and efficiency. In
this setting, brain behaviour is studied in order to appreciate the cor-
tical resources required during task execution to ascertain whether or
Table 2
Network econometrics of average clustering coefficient and mean pathlength (normalised e
efficiency, normalised cost, economy and the number connections between prefrontal and

Session Average clustering coefficienta Mean pathlengtha Small-world index Nu

Control 1 4.2071 2.9374 1.432253 41
2 3.7422 3.2517 1.150844 43
3 4.0494 3.4785 1.164122 40
4 4.001 3.5086 1.140341 35
5 3.1069 2.9383 1.05738 35
6 3.481 4.0705 0.855177 25

GCMC 1 3.2619 1.9538 1.669516 33
2 3.8609 2.7566 1.400602 43
3 4.5567 2.6008 1.752038 42
4 3.3168 2.6711 1.241736 36
5 4.6115 2.3856 1.933057 39
6 3.593 4.3075 0.834127 27

a Average clustering coefficient and mean pathlength normalised with respect to equiva
not assistive technology is helpful in ameliorating the burden of task
demands. Importantly, technology capitalising on the user's gaze behav-
iour to constrain motor performance enhanced the progression toward
an “expert” pattern of brain activation and did so with an improvement
in network economy and a reduction in network cost and normalised
global efficiency. The behavioural corollary of improved network archi-
tectures is superior learning capabilities manifest as more rapid gains
in technical performance. Many graph theoretical metrics exist (e.g. net-
work modularity and network motifs) and additional work in this field
might further capitalise on these metrics to investigate the impact of as-
sistive technology on brain behaviour at work.

Conclusion

The current study highlights the potential role of functional neu-
roimaging in characterising the effects of assistive technologies on
the user's brain. This neuroergonomic study demonstrates that gaze-
assistance technology leads to more rapid acquisition of motor tracking
skills and to the development of a pattern of cortical excitation that
quivalent random network) utilised to calculate small-world index, normalised global
parietal regions.

mber of F-P connections Normalised global efficiency Normalised cost Economy

0.00792 0.20314 0.80478
0.007351 0.23344 0.77391
0.006952 0.24928 0.75768
0.00722 0.2408 0.76642
0.007553 0.2207 0.78686
0.006709 0.26255 0.74416
0.008784 0.15323 0.85556
0.008215 0.20528 0.80293
0.008796 0.1548 0.85399
0.007258 0.23579 0.77147
0.008254 0.19813 0.81013
0.007179 0.24779 0.75939

lent random network (Watts and Strogatz, 1998).
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more swiftly progresses to the trained state, than that of free hand
learners. Gaze assistance not only improves technical performance
but results in a brain network whose architecture facilitates more ef-
ficient functional communication. For high precision industries such
as surgery improved neuronal efficiency during motor performance
may result in liberation of resources for the operator to attend to
other safety critical aspects of the procedure (e.g. decision making).

Study limitations

The authors acknowledge the following limitations with the
current study. First, although subject heart rate was monitored
throughout, scalp blood flow was not recorded and changes in
scalp flow are known to influence cortical haemodynamic data
(Orihuela-Espina et al., 2010; Saager and Berger, 2008; Tachtsidis
et al., 2008; Takahashi et al., 2011). Nevertheless, changes in optical
attenuation within scalp layers are known to be affected by the
optode source-detector separation. Specifically, phantom simula-
tion studies reveal a greater contribution of scalp layers to NIR sig-
nals with shorter source-detector separations than was used in the
current series of experiments (Hoshi et al., 2005; Takahashi et al.,
2011). As illustrated in laboratory experiments conducted by
Takahashi et al. (2011) and Hoshi et al. (2005) using multilayered
phantoms the partial optical pathlength contribution of the brain
tissues to the total optical pathlength may be as low as 5–22%. The-
oretically, changes in scalp flow may have contributed to the ob-
served “functional” changes in cortical haemodynamics observed
during free hand and gaze assisted learning. However, it should be
noted that unlike the current study in which both haemoglobin spe-
cies are simultaneously considered in connectivity analysis and acti-
vation accepted only in the presence of anticipated changes in both
HbO2 and HHb species, phantom simulations evaluating the contri-
bution of changes in scalp flow have focused solely on the HbO2 re-
sponse. Second, optical imaging enables activity from approximately
the outer centimetre of the cortex to be detected at channel loca-
tions. Accordingly, brain regions not imaged but task-relevant may
have been excluded. However, this is mitigated by targeting NIR
optodes to regions known to be relevant to task execution and is off-
set by the benefits that optical imaging confers in terms of flexibility,
relative resistance to motion artefact and the ability to study
learners in real world environments that is currently not be possible
with fMRI.
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