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Abstract. Abdominal magnetic resonance imaging (MRI) provides a straightfor-
ward way of characterizing tissue and locating lesions of patients as in standard 
diagnosis. However, abdominal MRI often suffers from respiratory motion arti-
facts, which leads to blurring and ghosting that significantly deteriorates the im-
aging quality. Conventional methods to reduce or eliminate these motion artifacts 
include breath holding, patient sedation, respiratory gating, and image post-pro-
cessing, but these strategies inevitably involve extra scanning time and patient 
discomfort. In this paper, we propose a novel deep-learning-based model to re-
cover MR images from respiratory motion artifacts. The proposed model com-
prises a densely connected U-net with generative adversarial network (GAN)-
guided training and a perceptual loss function. We validate the model using a 
diverse collection of MRI data that are adversely affected by both synthetic and 
authentic respiration artifacts. Effective outcomes of motion removal are demon-
strated. Our experimental results show the great potential of utilizing deep-learn-
ing-based methods in respiratory motion correction for abdominal MRI. 
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1 Introduction 
Clinical magnetic resonance imaging (MRI) often suffers from blurring and ghosting, 
namely motion artifacts, which are mainly caused by physiological motion of patients. 
During the magnetic resonance (MR) image reconstruction [1], such motion gives rise 
to k-space mismatches due to any variable phase errors taken place in phase-encoding 
steps. The resultant artifacts would seriously reduce the quality of images and further 
affect diagnostic accuracy. Motion prevention, artifact reduction, and motion correction 
are common approaches to reduce/eliminate these artifacts. The first one is simply by 
instructing the patients to hold their breath and keep their body still throughout the 
scanning. This requires cooperation with the patient, but inevitably causes patient dis-
comfort. It would be further problematic in pediatric imaging which is why general 
anesthesia [2] is often employed. However, its use carries the inherent risks associated 
with general anesthesia, and also requires the presence of anesthetists, increasing total 
cost.  
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A straightforward approach to artifact reduction is by shortening the imaging time 
so that it is much lower than the duration of body motion. Techniques such as echo 
planar imaging (EPI) [3] and compressed sensing (CS-MRI) [4] are widely applied to 
improve the immunity against motion. However, there would be drawbacks such as 
geometric distortion or limited spatial resolution of the acquired images. Besides, these 
methods even introduced new types of artifacts [5]. Triggering and gating [6] are also 
widely adopted to reduce periodic artifacts caused by physiological motion from heart-
beats and breathing. The scan time is able to be selected within breathing positions or 
cardiac cycles when the corresponding motions are detected to be minimal. However, 
such motion cycles may be irregular in clinical reality, particularly for those patients 
with arrhythmia and free-breathing scenarios. The removal of artifacts is still very chal-
lenging. 

 Post-processing or retrospective correction could alleviate the aforementioned prob-
lems. With the imaging data acquired, the correction process requires integration of 
navigator data, as well as implementation of large number of iterative algorithms [7]. 
Therefore, the required exhaustive computation is the primary barrier of using such 
post-processing correction. It may be resolved by the recent boost of calculation capa-
bility. There has been a trend in recent studies to utilize the highly parallel computing 
power of graphic processing units (GPU) by introducing deep-learning-based methods. 

Tamada et al. [8] proposed a multi-channel convolutional neural network (CNN) 
based method to reduce motion artifacts caused by respiration. In this work, respiration-
induced artifacts were simulated by adding phase errors in the phase encoding direction. 
Simulated images were trained and tested via an 8-layer CNN. Armanious et al. [9] 
compared the rigid and non-rigid motion correction results of four GAN-based models 
based on T1-weighted spin echo (SE) sequences from 17 subjects. Nevertheless, com-
parisons of these learning-based methods on diverse sequences of MRI scans with both 
synthetic and authentic motion artifacts have not yet been studied.  

In this work, we propose a dense U-Net based model that incorporates the GAN-
guided training strategy and perceptual loss to correct respiratory motion of abdominal 
MRI. Promising motion correction results with both synthetic and authentic respiratory 
artifacts are demonstrated in the testing phase. The major work contributions are: i) The 
dense U-Net based model is pre-trained with realistically simulated motion on the open 
access TCGA-LIHC dataset [10], and then fine-tuned on experimental MR images af-
fected by human respiration; ii) Comparisons among the proposed and other deep-learn-
ing-based methods on abdominal MRI motion correction; iii) Validation on diverse ex-
perimental datasets (GRE, FSE) along with the real motion pairs. 

2 Methods 
2.1 Network Structure 

The network structure for motion correction is proposed as shown in Fig. 1. We de-
signed a GAN-based model as data synthesizer to take advantage of its generalization 
capability on small datasets. The model comprises three major parts: i) A Dense U-Net 
[11] generator, ii) A Deep CNN model discriminator, and iii) A pre-trained VGG19 
feature extraction network. The generator is used to produce clean images from motion 
affected images, concurrently to preserve perceptual details for diagnostic purposes. 
The discriminator is trained to distinguish generated motion-free image from real clean 
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images. The perceptual network is implemented to extract high-level features from gen-
erated images and real images, which were used to optimize the perceptual loss. 

 
Fig. 1. Schematic of the proposed motion correction framework. 

Fig. 2 illustrates the architecture of our Dense U-Net generator. The network consists 
of four densely connected blocks connected by three transition layers and five upsam-
pling layers. Such densely connected blocks prevent the model from acquiring repeti-
tious features, and also from maximizing information flow for searching the optimal 
solution. The transition layers act as a compression unit to avoid feature maps from 
over-expanding. Note that bilinear interpolation is employed in the upsampling layers. 

The discriminator comprises eight convolution layers, two dense layers and a final 
sigmoid activation. The convolution layers are ordered by a 1-stride and a 2-stride in 
turn. The first two layers have sixty-four 3×3 filter kernels and the number of filter 
kernels is doubled for every two subsequent layers. Loss functions such as pixel-wise 
mean square error (MSE) often result in loss of details while maintaining global struc-
tures. This is because high frequency contents were usually neglected when achieving 
high PSNR. Inspired by the SRGAN [12], we apply a perceptual loss function capable 
of measuring the MSE of features that are extracted by an ImageNet pretrained VGG-
19 network. In this way, differences between high-level features of the generated and 
real images could be minimized so as to refine the anatomical structures of images. 

2.2 Perceptual Loss Function 

Instead of using pixel-wise MSE which led to blobby and overly smooth results (to be 
discussed in session 3.4), we incorporate a perceptual loss function in this model. The 
perceptual loss is a weighted sum of a content loss and an adversarial loss: 

                                                 (1) 

where  stands for perceptual loss,  and  represent content and adversarial 
loss, respectively. The content loss is defined by the Euclidean distance between feature 
representation of real motion-free image and generated clean image from motion af-
fected images. The loss function is defined as: 

                          (2) 
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where the  and  are, respectively, the width and height of VGG19 feature maps. 
The real clean and motion-affected images are  and  , respectively. The gener-
ated motion-free image is denoted as , while the feature representation  is 
the activated convolution inside the VGG19 network. The adversarial loss is applied 
to direct the generator to output natural images that is indistinguishable by the dis-
criminator, defined as below: 

                                      (3) 

where  is the probability of natural image referring to discriminator. 

 
Fig. 2. Schematic of the dense U-Net generator network. Decoders were skip-connected to en-
coders. In each dense block, outputs of each convolutional layers were densely connected with 
all the successive layers. 

3 Experiments 

3.1 Data Acquisition and Respiration Simulation 

The motion-free and motion-corrupted image pairs have to be precisely matched. To 
acquire such experimental dataset, it inevitably prolonged the scanning time, as each 
subject has to be scanned twice at least. Two datasets were acquired from eight healthy 
subjects on 1.5T MRI scanner (GE HDxt). Two MR sequences, gradient echo (GRE) 
and a fast spin echo (FSE), were employed to acquire abdomen images. The scanning 
parameters are set as: TR = 50 ms, matrix size = 128×128 mm for GRE and 192×192 
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mm for FSE, FOV = 189×189 mm for GRE and 284×284 mm for FSE, number of slices 
= 14 (GRE) and 20 (FSE), slice thickness = 8 mm. In GRE sequence, each subject went 
through two scans, under breath-free and breath-hold conditions. In FSE sequence, the 
paired motion-free and motion-corrupted images were acquired, respectively, using res-
piratory gating and under breath-hold condition. Each subject was scanned for approx-
imately 60 min on average, which is varied by the different respiration conditions of 
individual volunteer. To augment the training data, the magnitude images from each 
coil were extracted from paired motion-free and motion-corrupted dataset. The training 
dataset consists of 1,164 paired images from six subjects. 406 paired images from two 
subjects were used for validation. To improve the model generalization capability, we 
conducted the training on the open access dataset, TCGA-LIHC [10], with simulated 
respiration. The dataset contains 1,688 MRI, PT and CT series from 97 patients. We 
applied the simulation method referring to [8] in order to generate the k-space datasets 
with respiration-induced phase error in the phase-encoding direction.  

 
Fig. 3. Comparison of our proposed model with other three well-known deep learning models in 
motion correction. Residual motion images were calculated by subtracting the target patches from 
the motion-affected or model output pictures. Darker residual motion images indicate better cor-
rection results. 
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3.2 Implementation Details 

The model was implemented in python with Keras [13] high-level neural networks API. 
We applied an Adam [14] optimizer with the learning rate of 2×10-4 and a batch size of 
5. Grayscale MR images were converted into RGB to match the pre-trained VGG-19 
network. To augment the training data and alleviate the overfitting problem, we ran-
domly applied mirror flip on pictures with the probability of 0.5. The training of the 
proposed model required approximately 18 hours on an Nvidia RTX 2080Ti GPU with 
12GB memory. In the test phase, the inference time of one image ranges from 25 to 40 
ms on the same GPU. 

 
Fig. 4. Quantitative comparisons among our proposed model and other deep learning models, 
regarding to FSIM (Upper left), SSIM (Upper right), IQI (Lower left) and PSNR (Lower right). 
Such artifacts were induced under the FSE, GRE sequences, and the scans with simulated motion. 

3.3 Experimental Results 

The results of the proposed model and other deep-learning-based methods are com-
pared qualitatively (in Fig. 3) and quantitatively (in Fig. 4). We applied the conven-
tional U-Net [15], Dense U-Net [11] and pix2pix [16] GAN with Dense U-Net as gen-
erator for comparisons. All of these models were trained and tested on the same dataset. 
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Several observations can be made from Fig. 3. For the U-Net model, the model is 
only capable of removing bulk ghosting outside of the central area of images. The 
Dense U-Net surpasses it in capturing anatomical contours. However, the organ details 
are still blobby and blurry. This problem was alleviated by introducing a pix2pix-GAN-
guided training schema, but the textures were yet to be depicted, still leaving some 
striations in the residual motion images. The proposed model outperformed the others 
by restoring the sharpest details from motion-affected input images. 

The comparisons among the proposed model and the other deep learning models 
with boxplot figures is demonstrated in Fig. 4. Four criteria: 1) Feature Similarity Index 
(FSIM), 2) Structural Similarity Index (SSIM), 3) Image Quality Index (IQI), and 4) 
Peak Signal-to-Noise Ratio (PSNR) were selected for our comparison. Tests were con-
ducted on synthetic and authentic respiration artifacts. The proposed model performs 
the best average FSIM values of 0.920, 0.910 and 0.928 on FSE, GRE and simulated 
motion, respectively. The relatively short box plots of our proposed model prove the 
consistency of its outputs. The model also shows competitive and stable performances 
in SSIM, IQI and PSNR. However, all networks performed poorly on GRE scans. We 
believe images with low SNR may contribute to the worse performance achieved by 
our proposed model. Without the  pulse, GRE cannot refocus the phase accumu-
lation due to the static-field inhomogeneities, thus causing the acquired images with 
low SNR. 

4 Conclusion and Discussion 
This paper proposed a novel model incorporating the widespread densely connected U-
Net with a GAN-guided training schema and perceptual loss function. Our work is the 
first to apply this model in abdominal MRI motion correction. We were also the first to 
train and test the proposed model on MR images corrupted by both synthetic and au-
thentic respiratory motion. The experimental results on FSE, GRE and simulated-mo-
tion datasets achieve an FSIM of 0.920, 0.910 and 0.928 respectively, significantly out-
perform other deep-learning-based models. 

In the future work, we intend to employ 4D MRI models that visualizes precise an-
atomical structure in continuous time. We will manipulate with the adjacent k-space 
slices in time axis of the 4D images and synthesize more realistic motion artifacts for 
model training. By doing so, we expect to enhance the generalization capability of the 
model by introducing more training data. Another further study is to recover signal 
voids. Although bulk ghosting and blur could be efficiently removed, signal cancella-
tion is still hard to restore and will leave void areas on the output images (as discussed 
in Session 3.4). We will explore the restorative capability of GAN-based-networks by 
processing on k-space or MRI raw data. 
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