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Summary—Commonly used model-based approaches often 

have low tolerance to unmodelled loading, resulting in significant 

error. In this study we employ a nonparametric learning-based 

method that can approximate and update the inverse model of a 

redundant two-segment soft robot in an online manner. The 

performance of the control framework was evaluated by tracking 

of a 3D trajectory with an unknown mass added to the robot tip. 

The results indicate that the proposed controller could effectively 

adapt to the disturbance and continue to track the desired 

trajectory accurately. 

I. INTRODUCTION 

The introduction of robots constructed from hyper-elastic 
materials and embedded with fluidically driven chambers have 
given rise to a new class of robots that have gained prevalence 
in specialized applications like surgical intervention [1]. 
Subsequently, the growth of soft robotics field has sparked 
research focused on modelling the behavior of soft robots.  

The piecewise constant curvature (PCC) approach is 
commonly used to approximate the kinematic mapping of soft 
robots [2]. Although the use of PCC still remains predominant, 
any loading to the robot that results in non-circular bending 
invalidates the PCC assumption. Fully utilizing the 
conformability and maneuverability of soft continuum robots 
while also maintaining end-effector accuracy is still technically 
challenging. 

A path towards this goal is through learning-based 
approaches, which have gained popularity in soft robotics for 
their ability to bypass the difficulties in modelling uncertain 
internal and external dynamics. A number of NN-based 
approaches have been used to learn the inverse kinematics of 
soft continuum robots [3], however the presence of external 
disturbances was not accounted for in these studies. 
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Recently, Lee et al. [4] proposed a generic control 
framework based on [5] that is able to directly learn the inverse 
model of a soft continuum robot for task-space control. The 
algorithm utilizes locally-weighted linear models that are 
updated in an online manner, allowing adaptation to external 
disturbances. In this study, we extend the control framework in 
[4] to a multi-segment soft continuum robot, addressing the 
redundant nature of multiple bending segments.  

II. METHODS 

A. Implementation of Online Learning Algorithm 

The objective is to control the soft robot accurately in the 
task space motion transition coordinate Δ𝑠𝑘, while under 
unknown loading. For this reason, an online learning algorithm 
based on the work found in [5] is adapted for usage on our 
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Fig. 1. (a) Plug-in tip allowing easy switching to a weighted tip for our 
experimental validation. (b) Two-segment soft continuum robot coupled 

with 3D-printed components. 

Fig. 2. Proposed system architecture to enable online updating of the learned controller. 



  

redundant two-segment soft continuum robot. The goal of the 
algorithm is to estimate the global inverse mapping of the soft 
robot by combining a set of localized linear controllers. This 
technique is based on the idea that in a localized region of robot 
configuration, a valid inverse solution can be obtained because 
the inverse kinematics mapping forms a convex function.  

Initially, we aimed to acquire an appropriate local 
linearization of the robot forward motion mapping 
(𝑝𝑘 , Δ𝑢𝑘 , 𝑢𝑘) → Δ𝑝𝑘 , which relates the tip position 𝑝𝑘, change 
in chamber pressures Δ𝑢𝑘, and chamber pressures 𝑢𝑘 to the 
change in tip position Δ𝑝𝑘, which is nonlinear in general. Such 
local linearization can determine how many linear models are 
required to approximate the motion mapping, and the valid 
region of each linear model. The localized regression method, 
Locally Weighted Projection Regression (LWPR) [6], is 
employed to learn the forward motion mapping. For each 
piecewise linear forward model we assign a linear controller to 
approximate the global inverse mapping, using the same local 
valid regions. We wish to determine the local inverse transition 

models also positioned in 𝑝𝑘 and 𝑢𝑘 space, with parameter β𝐼𝐾
𝑖 . 

To estimate a global inverse model of the system, the local 
inverse controllers are combined in a weighted sum, acting as 
the Jacobian inverse for the manipulator: 

 Δ𝑢𝑘 =
∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)[𝛥𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘 , 𝑢𝑘]β𝐼𝐾

𝑖𝑛
𝑖=1

∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)
𝑛
𝑖=1

 (1) 

III. EXPERIMENTS, RESULTS AND DISCUSSION 

A. Experimental Platform 

A two-segment soft robot was molded using silicone rubber 
(Dragon Skin 10, Smooth-on Inc.) and had 3 actuation 

chambers per segment, which were equally spaced around the 
section perimeter. Each segment was able to bend 
approximately 100 degrees omnidirectionally. The x-y-z robot 
tip and base position was tracked by an electromagnetic (EM) 
tracking system (NDI Medical Aurora) with an update rate of 
40 Hz. The online learning algorithm was implemented in the 
Matlab environment, applying the open-source library for 
LWPR [7]. In order to effectively generate a functional global 
controller, pre-training data that sufficiently characterizes the 
robot’s workspace and possible configurations was obtained. 
Initially, 80 random waypoints were used to pre-train the 
global inverse model. The proposed system architecture is 
shown in Fig. 2. 

B. Trajectory Tracking Experiment with Tip Load 

An additional tip mass was added to the robot tip, as 
illustrated in Fig. 1(a). The total additional mass was 14.2 g 
and was not previously presented to the model during pre-
training. The real-time data obtained from the tracked tip 
position and actuator volumes were input to the online learning 
algorithm, enabling incremental improvements to the overall 
learned inverse model. The average frequency of the online 
updates was 23 Hz. Improvements to tracking could be 
observed in the results presented in Fig. 3. The mean absolute 
tracking error of every cycle could be seen to decrease 
significantly, starting at ±4.42 mm in the first cycle and 
reducing to ±1.63 mm in the third cycle.  

IV. CONCLUSIONS AND FUTURE WORK 

Overall, online learning of the original pre-trained model 
could be seen to improve the tracking performance through 
continuous online updating of the inverse model, even in the 
presence of a previously unknown external disturbance. Our 
future work includes further extension of the proposed control 
framework to three or more segments of a soft robot and 
incorporation of a greater number of task space variables to 
improve the manipulability of the robotic system. We also aim 
to integrate alternative sensing modalities such as FBG-based 
fiber optics in place of the heavily tethered EM system. 
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Fig. 3. Experimental results for trajectory tracking with additional tip 
loading, using the pre-trained model and updating with online learning: 

(a) Actual tracked trajectory and the desired trajectory. (b) Euclidean tip 

tracking error over time. Cycles are separated by the vertical dotted lines. 
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