
Title GPU-based proximity query processing on unstructured
triangular mesh model

Author(s) Lee, KH; Guo, Z; Chow, GCT; Chen, Y; Luk, W; Kwok, KW

Citation
The 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA., 26-30 May 2015. In Conference
Proceedings, 2015, p. 4405-4411

Issued Date 2015

URL http://hdl.handle.net/10722/213553

Rights IEEE International Conference on Robotics and Automation
Proceedings. Copyright © IEEE Computer Society.



Abstract—This paper presents a novel proximity query (PQ)

approach capable to detect the collision and calculate the

minimal Euclidean distance between two non-convex objects in

3D, namely the robot and the environment. Such approaches are

often considered as computationally demanding problems, but

are of importance to many applications such as online

simulation of haptic feedback and robot collision-free

trajectory. Our approach enables to preserve the representation

of unstructured environment in the form of triangular meshes.

The proposed PQ algorithm is computationally parallel so that

it can be effectively implemented on graphics processing units

(GPUs). A GPU-based computation scheme is also developed

and customized, which shows >200 times faster than an

optimized CPU with single core. Comprehensive validation is

also conducted on two simulated scenarios in order to

demonstrate the practical values of its potential application in

image-guided surgical robotics and humanoid robotic control.

 Index Terms – Graphics processing units (GPUs), haptic
feedback, proximity queries (PQs), robot motion planning

I. INTRODUCTION

Proximity Query (PQ) is a process to request for the

relative configuration or placement among 3D objects. This

PQ computational problem has been widely investigated and

is fundamental to many applications in fields of robot motion

planning, virtual prototyping, haptics rendering, computer

graphics and animation. The demand of efficient and fast PQ

is mainly driven by the trend to having online simulations of

high-fidelity haptic feedback at rate of >1kHz [1], or

real-time generation of continuous and collision-free

trajectory for safe robotic manipulation [2]. Poor PQ
performance can be the major bottleneck for developing

various robotic control schemes even with sufficient sensing

data available [3]. One of the typical examples can be found

in image-guided surgical robotics, e.g. Virtual Fixtures [4]

and Active Constraints [5, 6], of which the control concept is

to impose force feedback based on anatomical model

acquired by imaging data.

Broad-phase PQ involves checking whether two objects

are potentially touched or collided with each other. Bounding

volumes in primitive shapes, such as box (e.g. AABB [7] or

OBB), sphere [8] and torus [9], are commonly used to tightly
enclose the object for further detection of object collision.

These techniques have been extended to narrow-phase PQ,

 K.H. Lee, Z. Guo, Y. Chen, and K.W. Kwok are with the Department of

Mechanical Engineering, The University of Hong Kong, Hong Kong;

(e-mail: brianlkh@hku.hk).

G.C.T. Chow, and W. Luk are with the Department of Computing,

Imperial College London, London, SW7 2AZ, U.K.

which refers computation of the minimal Euclidean

separation or penetration depth when they are intersected;

however, the non-convex objects that are complex in shape

may neither readily be bounded nor partitioned by the boxes
and spheres. Convex decomposition of the non-convex object

is not efficient and also known as a NP-hard problem [10].

Triangular mesh is commonly used in representing 3D

objects. Lin-Canny [11, 12] and Voronoi-Clip (V-Clip) [13]

algorithms are typical narrow-phase PQ approaches. They

exploited Voronoi regions to determine the closest features

pair such as vertices, edges and faces between two convex

polyhedral meshes. The generation of Voronoi regions of

both object features is computationally expensive process due

to the complex data structure required. These approaches are

particularly not appropriate for objects of which their

geometric structure is rapidly changed or deformed
time-by-time. Gilbert-Johnson-Keerthi Algorithm (GJK) [14,

15] is a rather efficient method without having to perform any

data pre-processing. The overall real-time computational

performance of this iterative minimization method is

sensitive to the initial guess of the closest feature pair.

Chakraborty et al. [16] adopted Interior Point Algorithm [17]

of which the iterative process is sufficiently fast and efficient

for providing high-frequent PQs; however, it required the

objects to be represented by implicit surface functions that act

as a set of inequality constraints subject to the minimization

search.
To guarantee the global convergence, the aforementioned

approaches can only be applied on convex objects, thus

hampering their practical values in dynamic scenarios where

unstructured and irregular geometry details are involved.

Although some of these approaches (e.g. [13-16]) may ensure

low Big-O complexity in coping with large sampling, their

computational parallelism is forgone in the algorithmic

design. The inherent limitation is that these iterative

minimization approaches (e.g. GJK) cannot take advantage of

using parallel computing architecture which has become a

trending solution to processing large and complicated date

set[2]. In our previous work, we have demonstrated the
superior computational performance of PQ on large amount

of cloud points using GPU [18] and FPGA [19, 20].
 In this paper, we derive a PQ formulation which allows for
real-time computation of the shortest distance between
contour segment and irregular-shape mesh model. We suggest
that multiple series of contour segments enclosing the robotic
manipulator can be readily updated and moved based on its
kinematics chain. Moreover, the form of triangular meshes
modelling the unstructured and dynamic environment can still
be preserved. Furthermore, we exploit GPU-based parallel

GPU-based Proximity Query Processing on Unstructured

Triangular Mesh Model

Kit-Hang Lee, Ziyan Guo, Gary C.T. Chow, Yue Chen,
Wayne Luk, Fellow, IEEE and Ka-Wai Kwok, Member, IEEE

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 4405

computing techniques in support high-frequency and
low-latency PQ processing, thereby fulfilling many standard
real-time requirement (>1kHz). Detailed validation is
conducted on two scenarios of robotic tasks in extremely
different natures of application.

Fig.1. (a) CAD model of the ATLAS robot arm and the Sandia Robotic

Hand; (b) Volumetric pathways comprising segments (in green) tightly

enclosing along the arm and four fingers; (c) The corresponding twenty series

of segments, of which the contours can be posed flexibly along with the

subsequencially updated robot configuration; (d) Collision model

approximated by the union of same number of standard bounding cylinders;

(e) Such collision model fails to fully enclose the robot arm under alternative

configuration.

II. BACKGROUND

The motivation of addressing the aforementioned technical

challenges has led to the development of novel PQ algorithm,
which aims to determine the shortest distance between the

robot manipulator and its surrounding environment

constraints with high speed and efficiency. This algorithm is

the logical progression based on the work proposed by Kwok

et al [18], which calculates the shortest distance between an

arbitrary point 3 1x  and the enclosing segment. In this

study, the PQ formulation for analytical calculation of shortest

distance between contour segments (robot) and triangular

meshes (environment) is explored.

Instead of performing PQ with an exact robot model

(Fig.1a), our approach can greatly improve the computational

efficiency by establishing the tight enclosure [21] as Fig.1b-c
as compared to the standard bound cylinders (Fig.1d-e). Such

approach also enables parallelization by discretizing robot

segment and mesh. The pathway of robot segment, which has

been applied to various robotic kinematic configurations, can

be approximately defined as a centerline along the

manipulator consisting of a finite chain of line segments

𝑃𝑗𝑃𝑗+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 1,2, , 1)(cj N  , cN is the total number of nodes)

with their node at point jP and tangent of jM . A single

enclosing segment j (Fig.2a) of the pathway comprises

two adjacent circles jC and 1jC  . Each circle jC has its

center at point jP and lies on the plane normal to tangent jM

. The radius jR of circle jC is chosen such that the segments

can be tightly fitted along the model of robotic segments. The

resolution of segments is related to the interval of nodes  ,

where
1j jP P   . The lower the interval  is, the higher

the resolution increases with the expense of extra computation

effort.

Fig. 2. (a) Basic structure of a single segment j enclosed by two adjacent

circular contours. Mathematics variables introduced for geometric analysis;
(b) New variables are estimated after the previous iterative result.

Triangle mesh is one of the most common representations

of 3D irregular geometry in computer graphics and virtual

reality [22]. The mesh could be either constructed by using

robot sensors or based on the synthetic model. Many

tessellation algorithms (e.g. [22]) have been proposed to

efficiently transform the non-uniform 3D sensing data into

triangle mesh, which comprises a large set of triangles with

common edges and vertices
t

iT . Collision occurs when triangle
is in contact with the robot segments, which implies that the

shortest distance between the surround constrains and robot

segment is zero (0d ).
The PQ between an enclosing segment and a triangle can

be regarded as a 4-dimensional constrained optimization

problem. To date, the optimal value can be achieved via an

iterative numerical technique, which is at a greater

computational expense. In this study, a new algorithm is

presented to eliminate this barrier by regarding each edge of

the triangle mesh as an independent entity. Thus, the

estimation of edge-segment shortest distance will be

conducted firstly; thereby the closest point of each triangle
will be searched by evaluating its three edges. This method is

computationally efficient compared to the traditional

approach, which processes triangles independently. It greatly

reduces the computational workload in the way of averting

the repetitive computation of edges shared by adjacent

triangles. Besides, parallel computation with multiple

independent threads on GPU can achieve significant

acceleration. All these improvements implemented have led

to the performance evaluation of novel PQ algorithm and the

exploration of its application.

III. FORMULATION OF PROXIMITY QUERIES FOR IRREGULAR

MESH MODEL

In order to realize the objectives stated in Section II,

detailed PQ algorithm will be presented in this section. It

more specifically, consists of the three steps: 1) analytical

formulation of the edge-segment shortest distance;

2) approximation of its shortest distance; 3) identification of

triangle-segment shortest distance.

4406

A. Analytical Formulation of Edge-Segment Closest Point

Pairs

To calculate the shortest distance between a triangle and

segment, the primary step is to calculate the shortest distances

between each edge of triangle and segment[23]. As an
example, AB is the edge of triangle ABC (Fig.2), point x

and point y are the parameterized points representing edge

AB and surface of segment j respectively, which are

defined as follows:

1(1 () ())j j

x A AB

y C C 

  

   


   
 (1)

where parameters [, 0,1]  , [0,2)  .

With these parameterizations, the problem is transformed

into the searching for a closest point pair c cx y between edge

AB and segment j , as to which the corresponding shortest

distance can be expressed as min{ ,(,)}cd xy   . The

closest point pair c cx y should meet the following three

criteria in sense of geometrical analysis:

i. Point
cy should lie on the cross section containing

jP , 1jP  ,
cx ;

ii. The closest point pair c cx y should be

perpendicular to the edge AB , which is

c cx y AB ;

iii. The closest point pair c cx y should also be

perpendicular to segment edge 2 3v v , which is

2 3c cx y v v .

Referred to the above criteria, the closest point set

,(,)c cx y    can be determined with solution set (,,)   of

the formula below:

2 3

0

0

0

c c j

c c

c c

x y n

x y AB

x y v v

  


 
  


 (2)

where jn is the normal of a plane containing points jP , 1jP  ,

cx , such that:

1() ()j c j c jn x xP P    

(3)

 By substitution of parameter vectors ()u  , ()w  based on

(1), (2) can be rearranged as follows:

1

2

3

() () ()

() () () 0

() () () 0

T

T

T

u w F w

u w F w

u w F w

 

 

 

 





 



  (4)

where coefficient matrix 1,2,3

3 3F  , and parameter vectors

 () 1
T

u   ,  () 1 sin cos
T

w   

As a simplified version for this problem of distance

between edge AB and contour segment j , the analytical

space distance between an edge and a circle is already

difficult to obtain [23]. In our problem, the analytical formula

(i.e. (2)) is derived from a direct mathematical method and it

can be regarded as a necessary reflection of the high

geometrical complexity. In addition, this analytical

formulation requires extensive computational burdens,

making real-time calculation impossible. Instead, a novel

algorithm costing light computational resources, but also with

sufficient accuracy, might be the promising approach in

searching for the closest point pair.

B. Optimization-based Edge-Segment Closest Point Pairs

Estimation

Theoretically, an accurate distance 𝑑1 can be obtained by

solution set (,,)   in (2), but along with the expensive

computation. This is a trade-off that acquiring approximated

closest point pair is relatively practical, rather than aiming to

solving a closed form solution of (,,)   . By regarding the

line as a cylinder of zero radius, then this problem is

transformed into the case of calculation of the distance

between two cylinders. Referring to the algorithm of
cylinders intersection test proposed by Eberly et al. [23], it

can be deduced that the minimization cost function that

searches the shortest distance between segment and point

along the line is strictly convex. In addition, the object

function will have a global minimum that is either at the

endpoints of line or the point in-between line where its partial

derivatives for each variable are zero or undefined. In the

collision detecting system, it works almost exclusively with

convex objects (e.g. cylinder) due to the fact that convex

objects can force the algorithm converge faster [24]. The

properties of convexity and convergence guarantee the

direction of the iterative method, which will be presented
below, moving towards the closest pair as long as each step

achieves point pair with shorter distance than the previous

step.

It is worth noting that the last two criteria can be used to

evaluate the accuracy of this solution. Referred to Fig.3, the

proposed optimization-based method can be described as

follows:

Fig. 3. An example configuration showing the temporary closest point pairs

of each step processed by the optimization-based estimation. This

configuration can be considered as an more extreme case requiring for more
number of steps to reach convergence.

Step 1: Find an initial point 0x on edge AB , which is the

closest point to centerline 1j jP P  . This step provides an initial

value of closest point, which only takes the distance between

4407

centerline
1j jP P 
 and edge AB into account. However, due

to the fact that AB is not necessarily perpendicular to the

centerline
1j jP P 
, further steps will be provided.

Step 2: Referring to the methods proposed in [18],

corresponding vertices
0

2v and
0

3v on the circle contours can

be found, which lie on the plane containing points jP , 1jP  ,

0x . The segment edge 0 0

2 3v v contains the initial point
0y on the

enclosing segment and the initial distance is defined as

0 00d x y .

Step 3: Upon setting the initial guess, the iteration begins

with finding the point
1kx 

 on edge AB that is closest to
segment edge

2 3

k kv v , where k is the index of iteration and

0,1,2...k  (Fig.2a). This step, in essence, applies the third

criterion to the current value
kx and comes up with a closer

point pair estimate 1 'k kx y .

Step 4: Compute the corresponding closest point
1ky 
 and

edge 1 1

2 3

k kv v  on the enclosing segment by applying Kwok’s

PQ on
1kx 
 and the distance of this step is 1 1 1kk kx yd    . If

1kx 
 is found to locate inside the segment, return the shortest

distance of the segment as zero (0cd ). The first and third

criterions are applied again in this step to give a new

estimation.

Step 5: Test whether the resultant point pair 1 1k kx y 
fulfills the criteria 2 and 3 for the closest point pair. In this

step, two vectors are considered as perpendicular if the dot

product is smaller than a threshold  , where  is a small

positive number.

1 1

1 1

1 1 2 3

k k

k k

k k

x y AB

x y v v





 

 

 

  


 

 (5)

If Eq. (5) is not satisfied, increase k by 1 and repeat Step 3

to 5 until a closest point pair is found. For GPU

implementation, repeating these steps for a fixed iteration is

more efficient than imposing an ending criterion. If Eq. (5) is

satisfied, the shortest distance 𝑑𝑐 is found by 1kcd d  .

Between the two edges AB and 2 3

k kv v , point pair 1 'k kx y is

defined as the distance vector such that,

1 'k k k kx y x y  , i.e. 'k kd d

(6)

And considering the two points 'ky ,
1ky 

 on segment

surface, 1 1k kx y  is defined as the distance point pair between

point
1kx 
 and segment j . Thus,

1 1 1 'k k k kx y x y   , i.e. 1 'k kd d 

(7)

The inequalities (6) & (7) ensure that a vector with shorter

distance will be found in each loop, i.e. 1k kd d  , i.e.

straightly decreasing, in addition to the convexity of problem

as mentioned above, the shortest distance will converge to
global minimum after a certain number of iterations n .

In summary, the estimation of the shortest distance

between edge AB and segment j is,

, 0,1,in{ 2 ,m , }kc d kd n

(8)

C. Identification of Shortest Distance from Triangle to

Segment

Fig. 4. (a) Portion of cross-sectional region extracted from a single segment.
It passes through the corresponding contour centers

jP and
1jP 

. The

potential closest points x0…3 always lay inside the Voronoi Region of the
coresponding closest feature FY ; (b) Voronoi Regions of a triangle in 2D

space.

Upon computing the closest point pairs for each triangle
edge, identification of the closest feature (vertex, edge, or face)
on the triangle is of paramount importance. The traditional
method (e.g. V-Clip [13]) operates iteratively by searching the
closest points on the whole polyhedra, which is confined
between convex shapes. The major disadvantage is its slow
calculation speed for larger mesh and at the same time doesn’t
allow parallelization. Our identification method is realized
based on Theorem 1, while the parallelization is allowed so as
to increase its process speed.

Theorem 1 Assume that FX and FY is a pair of features

from each of two disjoint convex polyhedra, containing a pair

of closest points for the polyhedra. Let VR(FX) and VR(FY)

denote their Voronoi Regions, x ∈ FX and y ∈ FY be the

closest points between FX and FY. If x ∈ VR(FY) and y ∈

 VR(FX), then x and y are a globally closest pair of points
between the polyhedra.

In the proposed PQ algorithm, FX and FY represent the

features (vertex, edge or surface) of triangle ABC and

segment j respectively. As shown in Fig.4a, upon

extracting a cross-sectional region confined by 1,2,3,4

j

iv  , the

closest feature FY (i.e. segment edge 2 3

j jv v) is determined by
j  such that the Voronoi Region VR(FY) always contains x .

Thus x ∈ VR(FY) is always true by definition. Therefore, only

the correlation between VR(FX) and FY need to be evaluated in

order to find out the closest feature FX .

A triangle possesses 7 features with mutually exclusive

Voronoi Regions: 3 vertices, 3 edges and 1 surface. As shown
in Fig.4b, Voronoi Regions

IIIVR ,
VVR ,

VIIVR are for the

vertex features A , B , C respectively,
IIVR ,

IVVR ,
VIVR are

for the edge features AB , AC , BC respectively and
IVR

is for the face feature.

To identify the closest feature, the boundary features of a

triangle comprising 3 edges and 3 vertices except for the face,

are considered. The corresponding shortest distance will then

be computed, thus finding the closest one to the contour

segment. The shortest distance of the 3 bounding edges (AB ,

AC , BC) is calculated using the proposed PQ formulation

in Section B. This process naturally covers the PQ of vertex

features as they are the endpoints of edges. Hence, the closest
feature FXmin could be either laid on an edge or exactly at a

4408

vertex, depending whether the resultant closest point is

located at a vertex or on an edge on the triangle boundary. The

closest feature will then be determined as the minimum one

among the resultant shortest distances:

,min , ,min{ , },c AB c BC c ACd dd d

At this stage, the only remaining potential closest features

on the triangle are FXmin and the face. Referring to Theorem 1,

if the corresponding closest point on the segment side yc lies

within VR(FXmin), we can confirm that the FXmin is the closest

feature to the segment. Otherwise, the closest point appears

on the surface of the triangle. This situation is relatively rare
because it only happens when the closest point on the

segment side lies on its circular contours. In this case, the

corresponding closest point can be estimated intuitively with

the centroid of the closest points of the three edges.

Fig. 5. Illustrating GPU and CPU computational performance of PQ process

with 30 segments and millions of meshes

Fig. 6. Speedup of PQ computation implemented on GPU with

respect to CPU

IV. IMPLEMENTATION AND RESULTS

The overall performance of the proposed PQ algorithm is

evaluated on two different types of processor: multi-core

CPUs and GPUs, of which their speedup and real-time

response are investigated. The CPU-based PQs act as the

baseline or reference for comparison with the implementation

on GPUs. The CPU-based reference is also designed with
detailed kernel source code (CUDA), and compiled using

Visual Studio 2012 on an AMD Phenom™ II X4 955

Processor@3.20GHz. A standard GPU platform, nVidia GTX

770, is adopted, which contains 1536 CUDA cores.

Modern GPUs normally have 10-100 times higher

computation power in floating-point precision, compared to

the modern CPUs. In Fig.6, our GPU speedup can achieve

two orders, around 200 times, faster than the single-core CPU;

Thirty segments are involved, and it allows for PQs on around

4M triangle meshes at rate of >1Hz (Fig.5). It is worth noting

that their main memory bandwidth does not scale up
accordingly and is usually 5-10 times higher than CPUs only.

This is also the reason why the number of times speedup

cannot be maintained necessarily at constant level, as

illustrated in Fig.6, but showing that the speedup can be even

increased with the number of triangular mesh because of its

further efficient memory access.

In our GPU-based computational scheme, we propose to

transfer mesh data into small local memory within each

CUDA processor; therefore, only the triangle data are loaded

from the main memory. This prevents from degrading the

performance due to the insufficient bandwidth of the main

memory access.

A. Broad-phase culling with Mesh Segmentation and Level

of Detail Techniques

A broad phase technique that efficiently prune away
unnecessary pair-wised PQ test in the search of the shortest

distance is employed. This further enhance the overall

performance of the proposed PQ algorithm:

i. A set of sub-meshes is created by bisecting the input

mesh successively into smaller pieces, as shown in Fig.7.

ii. Each sub-mesh is simplified into a lower level-of-detail
(LOD) version while preserving their geometric feature.

iii. To cull out the closest sub-mesh to the contour segments,

the PQ of every simplified sub-meshes are computed,

which can be completed quickly because the number of

mesh is substantially reduced after simplification.

iv. Finally, the exact closest point pair is determined by

performing our proposed PQ on only the closest piece of

mesh in high resolution.

The advantage of this technique is that it does neither

require a convex input mesh nor convex bounding volume

representation of the input mesh, resulting in high

computationally efficiency and easy implementation. The

experimental result (Table 1.) demonstrated that this culling

technique further speedup the overall PQ performance on

both CPU and GPU processors by at least 70%.

4409

Fig. 7. The segmented sub-mesh of the left atrium model with (a) 8

segments (b) 4 segments for broad-phase culling

Processor Layer(s) of

Bisection

Culling

Time (s)

Narrow-phase

Time (s)

Total Time (s)

CPU

Brute - 46.04 46.04

1 9.15 1.73 10.89

2 9.22 0.70 9.9

3 9.22 0.33 9.5

GPU

Brute - 0.946 0.946

1 0.193 0.035 0.227

2 0.206 0.014 0.220

3 0.213 0.006 0.219

Table 1. The computation time of PQs on 1 million of mesh. PQs with

culling are also applied with different numbers of model bisections.

Two scenarios are simulated and designed according to

practical robotic tasks in two extremely different nature of

size and manipulation accuracy required. Both simulated

tasks provide sufficient information to analyze the efficiency

and accuracy of the proposed PQ under the software

framework of Robot Operating System (ROS).

B. Intra-cardiovascular Catheter Navigation

Fig.8 shows the human left atrial model constructed by

pre-operative cardiac MR images for cardiovascular

electrophysiology (EP) intervention – a minimally-invasive

surgical treatment of heart rhythm disorders [25]. This mesh

surface model comprises 5,372 vertices, 31,974 edges and
10658 triangular meshes, which is a part of the EP roadmap

acting as the primary reference for electrophysiologist to

maneuver the catheter tip to the lesion target for tissue

ablation [26]. The EP catheter tip is fitted with 7 contour

segments, and its position is measured and tracked

continuously [27]. Its instantaneous PQ distances relative to

the roadmap surface are indicated with the RGB colour codes.

Such PQ information can be foreseen to give strong hints for

safe and precise catheter navigation, since the robotic control

of catheter for EP has already adopted in real clinical practice

(e.g. Hansen Sensei® robotic catheter system). Given the EP
roadmap modelled by the number of mesh below 10K, the PQ

can be mainland at rate >1Hz; thereby, image-based haptic

feedback can be made possible, and it could provide

electrophysiologist with navigation guidance to access route

to lesion regions safely and accurately [28].

C. Motion Planning for Anthropomorphic Manipulator

The other scenarios [29] (Fig.9) simulates an interactive

robotic task involving high degree-of-freedom (DoF)

manipulation carried out by an advanced humanoid robot,

ATLAS (Boston Dynamics, MA, USA). The active sensory
system, Light Detection and Ranging (LIDAR), mounted on

its head, enables accurate geometry perception. It also

facilitates high-quality 3D representation of the unstructured

environment in the form of cloud points. The mesh surface

(Fig.9) is constructed online with fast tessellation of the

point-cloud data. This is a sub task in the DARPA Challenge,

which is required to accomplish autonomously with minimal

human intervention. The anthropomorphic arm and hand are

controlled to reach the valve wheel behind a thin wall. The

warped surface throughout the hole is also detailed by the

4308 meshes. High-frequency PQ process is applied to
deduce a collision-free trajectory in high-dimension joint

space so that the hand posture can be optimized so as to turn

the valve wheel behind the wall ergonomically.

Fig. 8. (a-b) Two catheter configurations with different degree of steering

curvature. The catheter (with 7 segmentes) is advanced inside the left atrium

model (with 10,658 mesh) for radiofrequency ablation during the

cardiovascular electrophysiology procedure. The PQ sampling rate is

maintained at rate of 1kHz.

Fig. 9. (a) ATLAS reaching the valve wheel through a hole created

previously by the hand-held cutting tool. (b) PQ processed between the robot

hand (with 39 segments) and the wall with hole (with 4,308 meshes). An

optimal collision-free trajectory is estimated online with the aim to grasp the

wheel. The warmer the colour on wall indicates, the closer distance to the
robot arm and fingers is.

V. DISCUSSION AND CONCLUSION

We have summarized the challenges and difficulties of

implementing conventional PQ approaches. It is well

recognized that the performance of many real-time

4410

applications, such as haptic rendering and robot motion

planning, is coupled with an increasing demand on fast and

effective PQs. A versatile PQ formulation is proposed that the

unstructured environment involved in robotic tasks can be

flexibly represented by irregular triangular meshes, without

having to preprocess the input geometric data. Moreover, the

fitting of the contours along the robot kinematic chain needs

only to be conducted once. No specific constraint is required

for re-modeling the meshes, thus facilitating its use for

generic geometric structures. The input geometric data is also

not necessary to be temporal coherent. The number and

configuration of meshes and contour segments can be varying

time-by-time; therefore, the unstructured environment can be

kept rapidly changing in terms of its morphology and

topology.

Although the BIG-O complexity of this PQ algorithm is

proportional to the number of meshes and contour segments,

its computation structure is highly parallel and anticipated to

be further advanced with the trendy development of GPUs or

FPGAs. The GPU-based PQ computation has been

demonstrated to achieve >200 times speedup over single-core

CPU. Two scenarios have also simulated for validating its

practical values for real-time applications.

In our future, this work will be packaged as an open-source

library. It can be incorporated under ROS in support of many

real-time applications. We will also investigate how this PQ

algorithm can take further advantage of exploiting mixed

precision technologies [8] with larger single-precision FPU

resources on FPGAs.

ACKNOWLEDGMENT

This work is supported in parts by EPSRC in the UK, the

Croucher Foundation and the Research Grants Council

(RGC) in Hong Kong. We sincerely thank to the team in

Advanced Robotics Laboratory at The University of Hong

Kong for the access to their equipment.

REFERENCES

[1] N. Chakraborty, J. Peng, S. Akella, and J. Mitchell, "Proximity Queries

between Convex Objects: An Interior Point Approach for Implicit

Surfaces," in IEEE International Conference on Robotics and

Automation, 2006, pp. 1910-1916.

[2] J. Pan, L. Zhang, and D. Manocha, "Collision-free and Smooth

Trajectory Computation in Cluttered Environments," International

Journal of Robotics Research, vol. 31, pp. 1155-1175, 2012.

[3] M. Li and R. H. Taylor, "Spatial motion constraints in medical robot

using virtual fixtures generated by anatomy," in IEEE International

Conference on Robotics and Automation, 2004, pp. 1270-1275.

[4] M. Li, M. Ishii, and R. H. Taylor, "Spatial motion constraints using

virtual fixtures generated by anatomy," IEEE Trans. on Robotics, vol.

23, pp. 4-19, 2007.

[5] B. Davies, M. Jakopec, S. J. Harris, F. R. Y. Baena, et al.,

"Active-constraint robotics for surgery," Proceedings of the IEEE, vol.

94, pp. 1696-1704, 2006.

[6] K. W. Kwok, V. Vitiello, and G. Z. Yang, "Control of Articulated

Snake Robot under Dynamic Active Constraints," Medical Image

Computing and Computer-Assisted Intervention - Miccai 2010, Pt Iii,

vol. 6363, pp. 229-236, 2010.

[7] X. Zhang and Y. J. Kim, "Interactive Collision Detection for

Deformable Models Using Streaming AABBs," IEEE Trans. on

Visualization and Computer Graphics, vol. 13, pp. 318-329 2007.

[8] G. C. T. Chow, K. W. Kwok, W. Luk, and P. Leong, "Mixed Precision

Comparison in Reconfigurable Systems," in IEEE International

Symposium on Field-Programmable Custom Computing Machines,

2011, pp. 17-24.

[9] A. Escande, S. Miossec, and A. Kheddar, "Continuous gradient

proximity distance for humanoids free-collision optimized-postures,"

in IEEE-RAS International Conference on Humanoid Robots, 2007, pp.

188-195.

[10] C. L. Bajaj and T. K. Dey, "Convex Decomposition of Polyhedra and

Robustness," SIAM Journal on Computing, vol. 21, pp. 339-364, 1992.

[11] M. C. Lin and J. F. Canny, "A fast algorithm for incremental distance

calculation," in IEEE International Conference on Robotics and

Automation, 1991, pp. 1008-1014.

[12] J. F. Canny and M. C. Lin, "An opportunistic global path planner " in

IEEE International Conference on Robotics and Automation, 1990, pp.

1554-1559.

[13] B. Mirtich, "V-Clip: Fast and robust polyhedral collision detection,"

ACM Trans. on Graphics, vol. 17, pp. 177-208, 1998.

[14] E. Gilert, D. Johnson, and S. S. Keerthi, "A fast procedure for

computing the distance between complex objects in three dimensional

space," IEEE Journal of Robotics and Automation, vol. 4, pp. 193-203,

1988.

[15] S. Cameron, "A Comparison of Two Fast Algorithms for Computing

the Distance between Convex Polyhedra," IEEE Trans. on Robotics,

vol. 13, pp. 915-920, 1997.

[16] N. Chakraborty, J. Peng, S. Akella, and J. E. Mitchell, "Proximity

Queries Between Convex Objects: An Interior Point Approach for

Implicit Surfaces," IEEE Trans. on Robotics, vol. 24, pp. 211-220,

2008.

[17] R. H. Byrd, M. E. Hribar, and J. Nocedal, "An Interior Point Algorithm

for Large Scale Nonlinear Programming," SIAM Journal on

Optimization, vol. 9, pp. 35-59, 1999.

[18] K. W. Kwok, K. H. Tsoi, V. Vitiello, J. Clark, et al., "Dimensionality

Reduction in Controlling Articulated Snake Robot for Endoscopy

Under Dynamic Active Constraints," IEEE Transactions on Robotics,

vol. 29, pp. 15-31, Feb 2013.

[19] K. W. Kwok, G. C. T. Chow, T. C. P. Chau, Y. Chen, et al.,

"FPGA-based acceleration of MRI registration: an enabling technique

for improving MRI-guided cardiac therapy," Journal of

Cardiovascular Magnetic Resonance, vol. 16(Suppl 1):W11, 2014.

[20] T. C. P. Chau, K. W. Kwok, G. C. T. Chow, K. H. Tsoi, et al.,

"Acceleration of real-time Proximity Query for dynamic active

constraints," in Field-Programmable Technology (FPT), 2013

International Conference on, 2013, pp. 206-213.

[21] K. W. Kwok, G. P. Mylonas, L. W. Sun, M. Lerotic, et al., "Dynamic

Active Constraints for Hyper-Redundant Flexible Robots," Medical

Image Computing and Computer-Assisted Intervention - Miccai 2009,

Pt I, Proceedings, vol. 5761, pp. 410-417, 2009.

[22] S. Ilic and P. Fua, "Implicit meshes for surface reconstruction," IEEE

Trans on Pattern Analysis and Machine Intelligence, vol. 28, pp.

328-333, Feb 2006.

[23] D. Eberly, "Intersection of cylinders," 2010.

[24] C. Fares and Y. Hamam, "Collision detection for rigid bodies: A state

of the art review," GraphiCon 2005, 2005.

[25] Y. Chen, K. W. Kwok, J. Ge, Y. Hu, et al., "Augmented Reality for

Improving Catheterization in MRI-guided Cardiac Electrophysiology,"

Journal of Medical Devices - Transactions of the ASME, vol. 8, p.

020917, 2014.

[26] Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, et al., "MRI-conditional

catheter sensor for contact force and temperature monitoring during

cardiac electrophysiological procedures," Journal of Cardiovascular

Magnetic Resonance, vol. 16(Suppl 1):P150.

[27] K. W. Kwok, K. H. Lee, Y. Chen, W. Wang, et al., "Interfacing Fast

Multi-phase Cardiac Image Registration with MRI-based Catheter

Tracking for MRI-guided Electrophysiological Ablative Procedures,"

Circulation, vol. 130, A18568, 2014.

[28] K. W. Kwok, Y. Chen, T. C. P. Chau, W. Luk, et al., "MRI-based visual

and haptic catheter feedback: simulating a novel system's contribution

to efficient and safe MRI-guided cardiac electrophysiology

procedures," Journal of Cardiovascular Magnetic Resonance, vol. 16,

p. O50, 2014.

[29] K. H. Lee and W. S. Newman, “Natural Admittance Control of an

Electro-Hydraulic Humanoid Robot,” in IEEE International

Conference on Robotics and Biomimetics, 2014 (accepted)

4411

