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a b s t r a c t

In this paper, new conditions of stability and stabilization are proposed for periodic piecewise linear
systems. A continuous Lyapunov function is constructed with a time-dependent homogeneous Lyapunov
matrix polynomial. The exponential stability problem is studied first using square matricial represen-
tation and sum of squares form of homogeneous matrix polynomial. Constraints on the exponential
order of each subsystem used in previous work are relaxed. State-feedback controllers with time-
varying polynomial controller gain are designed to stabilize an unstable periodic piecewise system. The
proposed stabilizing controller can be solved directly and effectively, which is applicable to more general
situations than those previously covered. Numerical examples are given to illustrate the effectiveness of
the proposed method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic linear system is a class of systems which have periodic
dynamics. It is easy to find various prototypes in various engineer-
ing applications, such as rotor-bearing systems and rotor–blade
systems. Much attention of periodic systems has been put on their
theoretical development and engineering applications (Bittanti &
Colaneri, 2008; He, Han, & Wang, 2014; Jiao, Cai, & Li, 2016; Shao
& Zhao, 2017; Tao, Lu, Su, Wu, & Xu, 2017). However, one may
observe that the results of control problems for continuous-time
periodic systems is not that rich when compared with those of
discrete-time periodic systems. This is due to that discrete-time
periodic systems can be converted to time-invariant systems with
the lifting techniques;while for continuous-time periodic systems,
the Floquet problemwhich helps obtain a constant dynamicmatrix
is considerably more difficult to solve. Some efforts of solving the
control problems for continuous-time periodic linear system can
be found in Zhou (2008), Zhou and Duan (2012), Zhou, Hou, and
Duan (2013) and Zhou and Qian (2017). For more results about

✩ The work was supported by the GRF HKU 17205815, 17227616, Hong Kong
ITF program ITS/361/15FX, National Natural Science Foundation under Grant
(61703111, U1611262, 61425009) and the Fundamental Research Funds for the
Central Universities (2017FZA5010). The material in this paper was not presented
at any conference. This paper was recommended for publication in revised form by
Associate Editor Tongwen Chen under the direction of Editor Ian R. Petersen.

* Corresponding author.
E-mail addresses: panshuoli812@gmail.com (P. Li), james.lam@hku.hk (J. Lam),

kwokkw@hku.hk (K.-W. Kwok), rqlu@gdut.edu.cn (R. Lu).

periodic systems, the reader may refer to Bittanti and Colaneri
(2008) and its references.

Periodic piecewise linear system is a special kind of periodic
linear systems, which consists of several time-invariant subsys-
tems running periodically. Many engineering operations involving
DC–DC converters and conveyor systems could be treated as peri-
odic piecewise linear systems. From another aspect, after trunca-
tion and approximation, the periodic time-varying linear system
may be described as periodic piecewise linear system (Farhang
& Midha, 1995; Selstad & Farhang, 1996; Zhou & Qian, 2017). By
exploiting the special dynamic characteristics, techniques targeted
for periodic piecewise linear systems can be used to tackle the
control problems of continuous-time periodic time-varying sys-
tem. The stability of periodic time-varying system is investigated
in Zhou and Qian (2017) with the periodic piecewise linear model
approximation. The asymptotic stability, finite-gain Lp stability
and uniformly boundedness are studied with frequency responses
of the approximated periodic piecewise linear system. On the
other hand, periodic piecewise linear systems can be treated as
a special case of switched systems, of which the switching signal
is periodic, and the switching sequence and dwell time of each
subsystem is fixed. Techniques for switched systems (Xiang &Xiao,
2014; Zhai, Hu, Yasuda, & Michel, 2001; Zhao, Liu, Yin, & Li, 2014;
Zhao, Zhang, Shi, & Liu, 2012) may therefore be used for periodic
piecewise systems. The average dwell time approach is commonly
adopted in the above results and it is also extended to the filtering
problem of fuzzy switched systems with stochastic perturbation
in Shi, Su, and Li (2016). The stabilization problem for discrete-
time switched systemswith additive disturbance is investigated in
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Zhang, Zhuang, Shi, and Zhu (2015) with quasi-time-varying Lya-
punov function. It is known that the problem of time-dependent
switching stabilization of switched systems composed of unstable
subsystems is challenging, a novel idea of using invariant subspace
analysismethod to solve this issue is proposed in Zhao, Yin, andNiu
(2015). With the techniques broadly used in switched systems, the
exponential stability analysis of periodic piecewise linear systems
can be found in Li, Lam, Chen, Cheung, and Niu (2015) and Li, Lam,
and Chung (2015). A continuous time-varying Lyapunov function
based on an interpolation formulation is adopted to investigate the
stability problem in Li, Lam, Chen et al. (2015), for each subsystem,
the Lyapunov function has its own varying rate in time. Further-
more, a discontinuous Lyapunov function is formulated in Li, Lam,
and Chung (2015) to study the stability problem, which allows the
Lyapunov function to have incremental bounds at the subsystem
switching instants and, the Lyapunov matrix incremental bounds
may be different when switching between different subsystems.
It brings more slack variables and relaxes the constraints while
understandably increases the computational burden and complex-
ity. Moreover, some necessary and sufficient exponential stability
conditions are also proposed in Li, Lam, and Chung (2015) based on
the transition matrix, which greatly facilitates the stability verifi-
cation of periodic piecewise systems. The stabilization problem of
periodic piecewise system is studied in that work as well. Different
controllers with constant controller gains are designed for each
subsystem, and the corresponding algorithm is provided to solve
the controller gain. The finite-time stability and stabilization prob-
lems of periodic piecewise are studied in Xie, Lam, and Li (2017)
and a correspondingH∞ controller is proposed in thatwork aswell.
The application of control on periodic piecewise system subject to
actuator saturation can be found in Li, Lam, and Cheung (2016),
where a controller is designed for periodic piecewise vibration
system to attenuate the vibration.

In this work, new conditions on exponential stability and sta-
bilization problems are investigated for periodic piecewise linear
systems. Different from the previous works (Li, Lam, Chen et al.,
2015; Li, Lam, & Chung, 2015), a nonlinear Lyapunov matrix poly-
nomial is established instead of the linear interpolation Lyapunov
matrix, which not only introduces more free variables but also
helps relax the conditions with a more general class of Lyapunov
matrices. A matrix polynomial method is used in the robustness
analysis of system (Chesi, Garulli, Tesi, & Vicino, 2009), and it is also
extended to switched systems with time-varying uncertainties
in Briat (2015). In this work, the constructed Lyapunov matrix
polynomial is continuous and time-dependent, techniques from
Chesi et al. (2009) such as squarematricial representation and sum
of squares form are used to reformulate the Lyapunovmatrix poly-
nomial to derive the condition on exponential stability. Moreover,
the constraints on some mode-dependent parameters are relaxed
as well. Based on the proposed exponential stability condition, a
stabilizing controller is designed as well. Comparing with the con-
troller proposed in Li, Lam, and Chung (2015), apart from possibly
lower conservatism, this controller can be solved directly with
LMI conditions rather than through iterative algorithm. Moreover,
controllers are also designed for unstabilizable subsystems, which
may help stabilize the system more effectively and make the con-
dition easier to solve. The paper is organized as follows. Definitions
of exponential stability and matrix polynomials are provided in
Section 2. In Section 3, the stability criterion for periodic piece-
wise linear systems with continuous time-dependent polynomial
Lyapunov function are derived. Based on the result, time-varying
state-feedback controllers are synthesized to stabilize the system
in Section 4. Numerical examples are presented in Section 5 to
demonstrate the merits of the proposed techniques and the work
is concluded in Section 6.
Notation: Rn denotes the n-dimensional Euclidean space, Sn de-
notes a n-dimensional symmetric matrix. ∥ · ∥ stands for the

Euclidean vector norm, the superscript ′ refers tomatrix transposi-
tion, λ(·), λ(·) stand for the maximum, minimum eigenvalues of a
real symmetric matrix, respectively. In addition, P > 0 means that
P is a real symmetric and positive definite matrix.

2. Preliminaries

Consider a continuous-time periodic piecewise linear system of
the form

ẋ(t) = A(t)x(t) + B(t)u(t), (1)

where x(t) ∈ Rr , u(t) ∈ Rs are the state vector and control
input, respectively. It has a fundamental period Tp, that is, A(t) =

A(t +Tp), B(t) = B(t +Tp), for t ≥ 0. Suppose the interval [0, Tp) is
partitioned into S subintervals [ti−1, ti), i ∈ N , N = {1, 2, . . . , S},
where t0 = 0, tS = Tp, (A(t), B(t)) is time-invariant under the ith
subsystem and is given by (Ai, Bi). In other words, the dwell time
for the ith subsystem (Ai, Bi) is Ti = ti − ti−1 with

∑S
i=1Ti = Tp. In

this case, system (1) is equivalently represented by

ẋ(t) = Aix(t) + Biu(t), t ∈ [ℓTp + ti−1, ℓTp + ti) (2)

where ℓ = 0, 1, . . . , i = 1, 2, . . . , S. A definition concerning the
exponential stability of system (1) is given below.

Definition 1. Periodic piecewise system (1) with u(t) = 0 is said
to be λ∗-exponentially stable if the solution of the system from
x(0) satisfies ∥x(t)∥ ≤ κe−λ∗t

∥x(0)∥, ∀t ≥ 0, for some constants
κ ≥ 1, λ∗ > 0.

In this work, a class of polynomial Lyapunov functions is
adopted, some related definitions and techniques are introduced
(Chesi, 2010; Chesi et al., 2009).

Definition 2 (Monomial). A function f : Rq
→ R is a monomial if

f (τ ) = caτ a

where τ ∈ Rq, ca ∈ R, a ∈ Nq and the quantity of a1 + · · · + aq is
the degree of f .

Definition 3 (Polynomial). A function p : Rq
→ R is a polynomial

if

p(τ ) =

q∑
i=1

fi(τ )

where fi(τ ), i = 1, 2, . . . , q, is a monomial with finite degree, and
the degree of p equals the largest degree of f1, f2, . . . , fq. The set of
all p is denoted as P = {p : Rq

→ R}, and denote the set of all p of
degree h as Ph.

Definition 4 (Homogeneous Polynomial). A function p : Rq
→ R is

a homogeneous polynomial of degree h in q scalars if

p ∈ Ph.

It is interesting to observe that any polynomial of degree h can
be viewed as a homogeneous polynomial with one more variable
set to 1. In other words, p(τ ) =

∑h
i=0pi(τ ) where pi ∈ Pi can be

expressed as a homogeneous polynomial of degree i with

p(τ ) = p̂(y)|yq+1=1

where y = (τ ′, 1)′ and p̂(y) is the homogeneous polynomial given
as

p̂(y) =

h∑
i=0

pi(τ )yh−i
q+1.
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Definition 5 (Matrix Polynomial). The function P : Rq
→ Rl×l is a

matrix polynomial if

Pi,j ∈ P, i, j = 1, 2, . . . , l.

The set of all P is denoted as P♯
= {∆ : Rq

→ Rl×l
: Pi,j ∈ P, i, j =

1, 2, . . . , l}.

Definition 6 (Homogeneous Matrix Polynomial). The function P :

Rq
→ Rl×l is a homogeneous matrix polynomial of degree h in q

scalar variables if

Pi,j ∈ Ph, i, j = 1, 2, . . . , l.

Denote the set of all l × l homogeneous matrix polynomials of
degree h in q scalar variables as P♯

h .

It is worthy mentioning that any matrix polynomial P can be
viewed as a homogeneous matrix polynomial with entries of P
expressed as a homogeneous polynomial.

Definition 7 (Power Vector). Let τ {h} be a vector inRσ (q,h) such that,
for all p ∈ Ph, there exists g ∈ Rσ (q,h) satisfying

p(τ ) = g ′τ {h}.

Then τ {h} is called a power vector for Ph, where

σ (q, h) =
(q + h − 1)!
(q − 1)!h!

.

Definition 8 (SOS (Sumof Squares)Matrix Polynomial). If there exist
Pk ∈ P♯

h, k = 1, 2, . . . , h, with h ≥ 1 such that

P(τ ) =

h∑
k=1

P ′

k(τ )Pk(τ ).

Then, P(τ ) is said to be an SOS matrix polynomial.

It is obvious that any SOS matrix polynomial is non-negative defi-
nite.

3. Stability analysis

In this section, a quadratic Lyapunov function with continuous
time-dependent Lyapunov matrix polynomial is adopted to de-
velop stability condition for periodic piecewise linear systems.

Suppose x(t) ∈ Rr and consider a Lyapunov function with the
form

v(x, t) = x′(t)P(t)x(t), (3)

where P(t) ∈ Rr×r is chosen to be a continuous matrix polynomial
dependent on t of degree 2d, that is, for t ∈ [ℓTp+ti−1, ℓTp+ti), d =

1, 2, . . . , ℓ = 0, 1, 2 . . . ,

P(t) = Pi(t) = Pi,0 + Pi,1(t − ℓTp − ti−1) + · · ·

+ Pi,2d(t − ℓTp − ti−1)2d (4)

and Pi,0, . . . , Pi,2d, are constant matrices. Here P(t) is a periodic
time-dependent matrix polynomial with fundamental period Tp,
that is, P(t) = P(t + ℓTp). To ensure continuity of P(t), at each
switching interval over a period, one hasP(t1) = P(t−1 ), P(t2) =

P(t−2 ), . . . P(tS) = P(t−S ), which lead to that
∑2d

j=0P1,jT
j
1 =

P2,0,
∑2d

j=0P2,jT
j
2 = P3,0, . . .

∑2d
j=0PS,jT

j
S = P1,0. Then, one

has
∑S

k=1
∑2d

j=1Pk,jT
j
k = 0, which implies

S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S = −T 2d

S PS,2d. (5)

Since any polynomial can be viewed as a homogeneous polyno-
mial and any matrix polynomial can be viewed as a homogeneous
matrix polynomial with entries expressed as a homogeneous poly-
nomial as mentioned before. Then, Lyapunov matrix polynomial
P(t) can be formulated as a homogeneousmatrix polynomial given
as, for t ∈ [ℓTp + ti−1, ℓTp + ti),

P(t) = Pi(t) = Pi,012d
+ Pi,1(t − ℓTp − ti−1)12d−1

+ · · ·

+ Pi,2d(t − ℓTp − ti−1)2d. (6)

Define

τ {d}(t) = τ
{d}
i (t)

= (1, t − ℓTp − ti−1, . . . , (t − ℓTp − ti−1)d)′ (7)

where ℓ = 0, 1, . . . , i = 1, 2, . . . , S, then homogeneous ma-
trix polynomial P(t) of degree 2d can be represented according
to square matricial representation (SMR) (Chesi, Tesi, Vicino, &
Genesio, 1999) via

P(t) = (τ {d}(t) ⊗ I)′(H + L(β))(τ {d}(t) ⊗ I) (8)

where H ∈ Srσ (2,d), L is a linear parametrization of the set

L = {L ∈ Srσ (2,d)
:

(τ {d}(t) ⊗ I)′L(β)(τ {d}(t) ⊗ I) = 0, ∀τ ∈ Rq
} (9)

whose dimension is given as

ω(2, d, r) =
1
2
r(σ (2, d)(rσ (2, d) + 1) − (r + 1)σ (2, 2d)).

It should be noticed that there are many other alternatives of
choosing τ {d} such as [1, t, t2, . . . , td]′. However, the choice as (7)
may be more suitable than others since it avoids expanding the
term (t −ℓTp − ti−1) of higher degrees. Then, based on the SMR of a
matrix polynomial, an SOS matrix polynomial can be constructed
with the following lemma.

Lemma 1 (Chesi, 2010). A matrix polynomial P is SOS if and only if
there exists β such that

H + L(β) ≥ 0,

where H, L are given in (8).

By exploiting Lyapunov function (3), matrix polynomial (4), and
Lemma 1, a sufficient condition which guarantees the exponential
stability of periodic piecewise linear system is given as follows.

Theorem1. Consider periodic piecewise linear system (2)with u = 0,
given λ∗ > 0. If there exist λ⋄

i , i = 1, 2, . . . , S, and real symmetric
matrices Pi,j, vectors δi, βi, i = 1, 2, . . . , S, j = 0, 1, . . . , 2d, such
that

Ψi(Pi,j) + L(δi) > 0, (10)

Γi(Pi,j) + L(βi) < 0, (11)
S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S = −T 2d

S PS,2d, (12)

2λ∗Tp −

S∑
i=1

λ⋄

i Ti ≤ 0, (13)

where L(δi), L(βi) are the linear parametrizations according to L in
(9), and Ψi(Pi,j) ∈ Srσ (n,d), Γi(δi,j) ∈ Srσ (n,d), are given as (double
superscript (m, n) represents mth row, nth column block),

m = n = 1
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Ψ
(m,n)
i = P1,0 +

i−1∑
k=1

2d∑
j=1

Pk,jT
j
k,

Γ
(m,n)
i = A′

iP1,0 + P1,0Ai + λ⋄

i P1,0 + Pi,1

+

i−1∑
k=1

2d∑
j=1

(A′

iPk,j + Pk,jAi + λ⋄

i Pk,j)T
j
k,

2 ≤ m = n ≤ d,
Ψ

(m,n)
i = Pi,2(m−1),

Γ
(m,n)
i = (2m − 1)Pi,2m−1 + A′

iPi,2(m−1) + Pi,2(m−1)Ai

+ λ⋄

i Pi,2(m−1)

n = m = d + 1
Ψ

(m,n)
i = Pi,2(m−1),

Γ
(m,n)
i = A′

iPi,2d + Pi,2dAi + λ⋄

i Pi,2d,
n = m + 1, 1 ≤ m ≤ d

Ψ
(m,n)
i =

1
2
Pi,2m−1,

Γ
(m,n)
i =

1
2
(2mPi,2m + A′

iPi,2m−1 + Pi,2m−1Ai + λ⋄

i Pi,2m−1)

m = n + 1, 1 ≤ n ≤ d

Ψ
(m,n)
i =

1
2
Pi,2n−1,

Γ
(m,n)
i =

1
2
(2nPi,2n + A′

iPi,2n−1 + Pi,2n−1Ai + λ⋄

i Pi,2n−1),

elsewhere
0, (14)

then system (2) is λ∗-exponentially stable.

Proof. Choose τ
{d}
i (t) as (7) shows, and consider Lyapunov function

(3) with P(t) given as (4), for t ∈ [ℓTp + ti−1, ℓTp + ti), one has

v(x, t) = x′(Pi,0 + Pi,1(t − ℓTp − ti−1) + · · ·

+ Pi,2d(t − ℓTp − ti−1)2d)x. (15)

Based on the fact that (τ {d}
i (t) ⊗ Ir )′L(δi)(τ

{d}
i (t) ⊗ Ir ) = 0, (15) can

be rewritten as

v(x, t) = x′(τ {d}
i (t) ⊗ Ir )′(Ψi(Pi,j) + L(δi))(τ

{d}
i (t) ⊗ Ir )x.

With (10), we can obtain v(x, t) > 0 for x ̸= 0.
Similarly, one has, for t ∈ [ℓTp + ti−1, ℓTp + ti),

v̇(x, t) + λ⋄

i v(x, t) = x′
(
A′

iPi,0 + Pi,0Ai + Pi,1 + λ⋄

i Pi,0
+ (A′Pi,1 + Pi,1Ai + 2Pi,2 + λ⋄

i Pi,1)(t − ℓTp − ti−1) + · · ·

+ (A′Pi,2d−1 + Pi,2d−1Ai + 2dPi,2d
+ λ⋄

i Pi,2d−1)(t − ℓTp − ti−1)2d−1

+ (A′Pi,2d + Pi,2dAi + λ⋄

i Pi,2d)(t − ℓTp − ti)2d
)
x

= x′(τ {d}
i (t) ⊗ Ir )′(Γi(Pi,j) + L(βi))(τ

{d}
i (t) ⊗ Ir )x. (16)

According to (11), for x ̸= 0, one has

v̇(x, t) < −λ⋄

i v(x, t). (17)

Over the first period, it holds that

v(x, ti) < e−λ⋄

i Tiv(x, ti−1). (18)

Then with (13) we obtain

v(x, tS) < e−(
∑S

i=1 λ⋄

i Ti−2λ∗Tp+2λ∗Tp)v(x, 0)
≤ e−2λ∗Tpv(x, 0), (19)

it is easy to conclude that

v(x, ℓTp) ≤ e−2λ∗Tpv(x, (ℓ − 1)Tp), ℓ = 1, 2, . . . , (20)

and

v(x, ℓTp) ≤ e−2ℓTpλ∗

v(x, 0), (21)

which implies v(x, ℓTp) → 0 as ℓ → ∞.
Since v(x(0), 0) = x′(0)P(0)x(0) = x′(0)P1,0x(0) and v(x(ℓTp),

ℓTp) = x′(ℓTp)P(ℓTp)x(ℓTp) = x′(ℓTp)P1,0x(ℓTp), one can obtain that
the system state satisfies

∥x(ℓTp)∥ ≤ νe−λ∗(ℓTp)∥x(0)∥, (22)

where ν =

√
λ(P1,0)/λ(P1,0).

Consider that

x(t) = eAi(t−ℓTp−ti−1)x(ti−1), t ∈ [ℓTp + ti−1, ℓTp + ti), (23)

and follow the steps in Li, Lam, and Chung (2015), then one has

∥x(t)∥ ≤ η∥x(ℓ − 1)Tp∥ ≤ βνe
2λ∗(ℓ−1)Tp

2 ∥x(0)∥

= ηνeλ∗Tpe−λ∗ℓTp∥x(0)∥, (24)

where η = Π S
i=1φi. Since t < ℓTp, it implies e−λ∗t > e−λ∗ℓTp . Hence,

∥x(t)∥ ≤ κe−λ∗t
∥x(0)∥, (25)

where κ = βνeλ∗Tp . Therefore, the periodic system is λ∗-expo-
nentially stable. □

Remark 1. Due to the continuity of Lyapunov function, there is
an equality constraint (12) in Theorem 1. It should be noticed that
with this equality, from (5), for the Sth subsystem, one has

Ψ
(d+1,d+1)
S = −

1
T 2d
S

⎛⎝ S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S

⎞⎠ ,

Γ
(d,d+1)
S = Γ

(d+1,d)
S

=
1
2
(A′

SPS,2n−1 + PS,2n−1AS + λ⋄

dPS,2n−1)

−
d
T 2d
S

⎛⎝ S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S

⎞⎠ ,

Γ
(d+1,d+1)
S = −

1
T 2d
S

A′

S

⎛⎝ S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S

⎞⎠
−

1
T 2d
S

⎛⎝ S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S

⎞⎠ AS

−
λ⋄

S

T 2d
S

⎛⎝ S−1∑
k=1

2d∑
j=1

Pk,jT
j
k +

2d−1∑
j=1

PS,jT
j
S

⎞⎠ . □

Remark 2. In Li, Lam, and Chung (2015), constraints were im-
posed on the parameter λ⋄

i for each subsystem. Specifically, for
a Hurwitz subsystem, positive λ⋄

i should be imposed, while for a
non-Hurwitz subsystem, negative λ⋄

i was imposed. In this method,
such constraints are relaxed, λ⋄

i is only needed to satisfy 2λ∗Tp −∑S
i=1λ

⋄

i Ti ≤ 0 over a period. In other words, negative λ⋄

i may be
associated with Hurwitz subsystems and positive λ⋄

i may possibly
be associated with non-Hurwitz subsystems. It introduces more
freedom to solve the condition. □

It is worthmentioning that to employmatrix polynomials, their
degrees should be even andgreater thanor equal to 2, the condition
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proposed in Theorem1 cannot be reduced to the interpolation case
as in Li, Lam, Chen et al. (2015) with Pi,j = 0, i = 1, 2, . . . , S, j =

2, 3, . . . , 2d.

4. Stabilizing controller synthesis

In this section, controllerswith time-varying gains are designed
to stabilize the unstable periodic piecewise linear system with
possibly unstabilizable subsystems.

Consider a periodic time-varying state-feedback control as

u(t) = Ki(t)x(t), t ∈ [ℓTp + ti−1, ℓTp + ti),

i = 1, 2, . . . , S, ℓ = 0, 1, . . . (26)

where Ki(t) is continuous in the ith subsystem and Ki(t + ℓTp) =

Ki(t).
With controller (26), the closed-loop form of system (2) can be

obtained as

ẋ = Aci(t)x(t) (27)

where Aci(t) = Ai + BiKi(t).
It should be noticed that, differently from open-loop system

(1) which includes time-invariant subsystems, the closed-loop
system consists of time-varying subsystem because of the time-
varying controllers. To facilitate the development, introduce the
Dini derivative (Garg, 1998) of a continuous function Z(t) given by

D+Z(t) = D+Zi(t) = lim
h→0+

sup
Zi(t + h) − Zi(t)

h
,

t ∈ [ℓTp + ti−1, ℓTp + ti) (28)

then one can obtain a stability result for the time-varying subsys-
tem case as follows.

Theorem2. Consider periodic piecewise system (27), let λ∗ > 0, be a
given constant. If there exist λ⋄

i , i = 1, 2, . . . , S, and a real symmetric
Tp-periodic, continuous and Dini-differentiable matrix function Z(t)
defined on t ∈ [0, ∞) such that , for i = 1, 2, . . . , S, t ∈ [ℓTp +

ti−1, ℓTp + ti), ℓ = 1, 2, . . . , Z(t) = Zi(t) satisfies

A′

ci(t)Zi(t) + Zi(t)Aci(t) + D+Zi(t) + λ⋄

i Zi(t) < 0, (29)

2λ∗Tp −

S∑
i=1

λ⋄

i Ti ≤ 0, (30)

then system (27) is λ∗-exponentially stable.

Proof. Construct a periodic Lyapunov function, for t ∈ [ℓTp +

ti−1, ℓTp + ti), ℓ = 0, 1, . . . , i = 1, 2, . . . , S,

v(x, t) = vi(x, t) = xT (t)Z(t)x(t) = xT (t)Zi(t)x(t)

where Z(t) > 0 is continuous. It is obvious that v(t) > 0 for x ̸= 0.
By employing theDini derivative of Z(t) as (28), thenone canobtain
that

D+vi(x, t) + λ⋄

i vi(x, t) = A′

ci(t)Zi(t) + Zi(t)Aci(t)
+D+Zi(t) + λ⋄

i Zi(t), (31)

with (29), one hasD+vi(x, t) < −λ⋄

i vi(x, t). Then, by following the
steps of the proof for Theorem 1, one has

∥x(ℓTp)∥ ≤ ν ′e−λ∗(ℓTp)∥x(0)∥, (32)

where ν ′
=

√
λ(Z(0))/λ(Z(0)).

According to Coppel’s inequality (Hewer, 1974), one has

∥x(t)∥ ≤ e
∫ t
ℓTp+ti−1

µ(Aci(τ ))dτ
∥x(ℓTp + ti−1)∥

whereµ(Aci(τ )) =
1
2 λ̄(Aci(τ )+A′

ci(τ )), Since τ ∈ [ℓTp+ti−1, t), then
µ(Aci(τ )) is continuous and bounded, hence there exists a constant
µ̂i such that µ̂i ≥ µ(Aci(τ )), then one has

∥x(t)∥ ≤ e
∫ t
ℓTp+ti−1

1
2 λ̄(Aci(τ )+A′

ci(τ ))dτ∥x(ℓTp + ti−1)∥

≤ eµ̂i(t−ℓTp−ti−1)∥x(ℓTp + ti−1)∥

≤ max(1, eµ̂iTi )∥x(ℓTp + ti−1)∥.

Similar to the steps in Li, Lam, Chen et al. (2015), one has

∥x(t)∥ ≤ β ′
∥x(ℓ − 1)Tp∥ ≤ βν ′eλ∗(ℓ−1)Tp∥x(0)∥

= β ′ν ′eλ∗Tpe−λ∗ℓTp∥x(0)∥ (33)

where β ′
=

∏S
i=1 max(1, eµ̂iTi ). Since t < ℓTp, it implies e−λ∗t >

e−λ∗ℓTp . Hence, one has

∥x(t)∥ ≤ κ ′e−λ∗t
∥x(0)∥ (34)

where κ ′
= β ′ν ′λ∗Tp. Therefore, system (27) is λ∗-exponentially

stable. □

Then, based on Theorem2, then the existence conditions of a set
of stabilizing controllers of periodic piecewise linear system can be
given as follows.

Theorem 3. Consider periodic piecewise system (2), let λ∗ > 0 be a
given constant. If there exist λ⋄

i , i = 1, 2, . . . , S, and matrices Wi,j,
Qi,k, vectors εci, ζci, i = 1, 2, . . . , S, j = 1, 2, . . . , 2d, such that

Ψci(Wi,j) + L(εci) > 0, (35)

Γci(Wi,j,Qi,j) + L(ζci) < 0, (36)
S−1∑
k=1

2d∑
j=1

Wk,jT
j
k +

2d−1∑
j=1

WS,jT
j
S = −T 2d

S WS,2d, (37)

2λ∗Tp −

S∑
i=1

λ⋄

i Ti ≤ 0, (38)

where L(εci), L(ζci) are the linear parametrizations according to L in
(9) and Ψci(Wi,j) ∈ Srσ (n,d), Γci(Wi,j,Qi,j) ∈ Srσ (n,d), are given as
(superscript (m, n) represents the mth row, nth column block)

m = n = 1

Ψ
(m,n)
ci = W1,0 +

i−1∑
k=1

2d∑
j=1

Wk,jT
j
k,

Γ
(m,n)
i = W1,0A′

i + AiW1,0 + λ⋄

i W1,0 − Wi,1

+

i−1∑
k=1

2d∑
j=1

(Wk,jA′

i + AiWk,j + λ⋄

i Wk,j)T
j
k,

+Q ′

i,0B
′

i + BiQi,0

2 ≤ m = n ≤ d,
Ψ

(m,n)
i = Wi,2(m−1),

Γ
(m,n)
i = −(2m − 1)Wi,2m−1 + Wi,2(m−1)A′

i + AiWi,2(m−1)

+Q ′

i,2(m−1)B
′

i + BiQi,2(m−1) + λ⋄

i Wi,2(m−1),

n = m = d + 1
Ψ

(m,n)
i = Wi,2(m−1),

Γ
(m,n)
i = Wi,2dA′

i + AiWi,2d + Q ′

i,2dB
′

i

+ BiQi,2d + λ⋄

i Wi,2d,

n = m + 1, 1 ≤ m ≤ d

Ψ
(m,n)
i =

1
2
Wi,2m−1,

Γ
(m,n)
i =

1
2
(−2mWi,2m + Wi,2m−1A′

i + AiWi,2m−1
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+Q ′

i,2m−1B
′

i + BiQi,2m−1 + λ⋄

i Wi,2m−1),

m = n + 1, 1 ≤ n ≤ d

Ψ
(m,n)
i =

1
2
Wi,2n−1,

Γ
(m,n)
i =

1
2
(−2nWi,2n + Wi,2n−1A′

i + AiWi,2n−1

+Q ′

i,2n−1B
′

i + BiQi,2n−1 + λ⋄

i Wi,2n−1),

elsewhere
0, (39)

then the closed-loop system is λ∗-exponentially stable, the periodic
state-feedback gain can be given as for t ∈ [ℓTp + ti−1, ℓTp + ti),

K (t) = Ki(t) = Qi(t)W−1(t), (40)

with time-varying matrix function Qi(t) and continuous time-varying
matrix function W (t) given in polynomial forms as

Qi(t) = Qi,0 + Qi,1(t − ℓTp − ti−1) + · · ·

+Qi,2d(t − ℓTp − ti−1)2d, i = 1, 2, . . . , S
i = 1

W (t) = W1 = W1,0 + W1,1(t − ℓTp) + · · · + W1,2d(t − ℓTp)2d

i = 2, . . . , S − 1

W (t) = Wi = W1,0 +

i−1∑
k=1

2d∑
j=1

Wk,jT
j
k + Wi,1(t − ℓTp − ti−1)

+ · · · + Wi,2d(t − ℓTp − ti−1)2d

i = S

W (t) = WS = W1,0 +

S−1∑
k=1

2d∑
j=1

Wk,jT
j
k + WS,1(t − ℓTp − tS−1)

+ · · · + WS,2d−1(t − ℓTp − tS−1)

−
1
T 2d
S

(
S−1∑
k=1

2d∑
j=1

Wk,jT
j
S +

2d−1∑
j=1

WS,jT
j
S)

Proof. For t ∈ [ℓTp + ti−1, ℓTp + ti), i = 1, 2, . . . , S, ℓ = 1, 2, . . . ,
based on (35) and the matrix function ofW (t), one has

W−1(t) > 0,

and it is continuous. Construct a Lyapunov function v = x′(t)W−1

(t)x(t) = x′(t)Z(t)x(t), then one has Z(t) continuous, Z(t) > 0, and
v(t) > 0 for x(t) ̸= 0.

On the other hand, based on (τ {d}
i ⊗ Ir )′L(ζi)(τ

{d}
i ⊗ Ir ) = 0, with

(36), one has

(τ {d}
i ⊗ Ir )′Γci(τ

{d}
i ⊗ Ir ) < 0,

it implies that

Wi(t)A′

i + AiWi(t) + BiQi(t) + Q ′

i (t)B
′

i − D+Wi(t)
+ λ⋄

i Wi(t) < 0. (41)

Multiply both sides of (41) with Zi(t) = W−1
i (t), and substitute

Qi(t) = Ki(t)Wi(t) in (41), then one has

A′

ciW
−1
i (t) + W−1

i (t)Aci − W−1
i (t)D+Wi(t)W−1

i (t)

+ λ⋄

i W
−1
i (t) < 0. (42)

Since D+W−1(t) = −W−1(t)D+W (t)W−1(t), then (42) can be
rewritten as

A′

ci(t)Zi(t) + Zi(t)Aci(t) + D+Zi(t) + λ⋄

i Zi(t) < 0. (43)

Then, with (41) and (43), according to Theorem 2, the λ∗-expo-
nential stability of the closed-loop system is established. □

Remark 3. Notice that the controller gains obtained with
Theorem 3 are time-varying, which is different from the one in
Li, Lam, and Chung (2015). In that work, constant controller gains
were used for different subsystems by employing linear time-
varying Lyapunov function. The condition in Li, Lam, and Chung
(2015) was non-convex, which could not be solved directly. An it-
erative algorithm is proposed to obtain the controllers gain, which
is complicated and dependent on initial conditions. In Theorem 3,
the condition is less conservative and the controller can be solved
directly, which is more applicable to general situations. □

Remark 4. It is worth mentioning that controller designed in
Theorem 3, similar to those proposed in Li, Lam, and Chung (2015),
can be used to stabilize the periodic piecewise linear system with
unstabilizable subsystems. In Li, Lam, and Chung (2015), con-
trollers were only designed for stabilizable subsystems, and no
controllers were designed for unstabilizable subsystem in order
to avoid resulting in large controller gain during the iteration.
However, in this method, controllers are designed for all subsys-
tems. For the unstabilizable subsystem, the controllable part can
be stabilized under the designed controller. □

In order to facilitate to verify the merit of this process, two
approaches are proposed based on Theorem 3. Approach I: no
controller is designed for unstabilizable subsystem, as in Li, Lam,
and Chung (2015). Approach II: all subsystem as designed with
controllers. It can be noticed that Approach I is a special case of
Algorithm II.

5. Numerical examples

In this section, two numerical examples are used to verify the
effectiveness of the proposed design approach. Example 1 is used
to verify the merits of our method when compared with that in
Li, Lam, and Chung (2015), Example 2 is used to verify the merits
designing controllers for unstabilisable subsystems in Theorem 3.

Example 1. Consider a periodic piecewise system consisting three
subsystems with Tp = 2 s and t1 = 0.5 s, t2 = 1.3 s, t3 = 2 s, the
subsystems are described by

A1 =

[
−2.1 0.6
0 0.5

]
, A2 =

[
−0.8 0.1
0.2 0.6

]
, A3 =

[
2.5 1.8
1.6 −3.5

]
,

B1 =

[
1
0

]
, B2 =

[
1
2

]
, B3 =

[
0.1
3

]
and the system initial state is x(0) = [0.01, 0.2]′. Obviously, all
subsystems are non-Hurwitz stable and the first system is unstabi-
lizable. Using Theorem 1 in Li, Lam, and Chung (2015), one can see
that this periodic piecewise system is unstable. In the following,we
will design stabilizing controllers for this system with Approach I,
choosing d = 1, construct a periodic continuousmatrix polynomial
W (t) for t ∈ [0, Tp) with degree 2. Since the first subsystem is
unstabilizable, no controller is designed for this system. Choose
λ⋄

1 = −2, λ⋄

2 = 0.5, λ⋄

3 = 2, then λ∗ can be chosen as 0.11,
according to Approach I, the controller gain is obtained and shown
in Fig. 1. The free variables are obtained as εc1 = −0.4908, εc2 =

1.7860, εc3 = 5.2048, ζc1 = −3.1331, ζc2 = 2.0889, ζc3 =

−0.1258.
Thenwith the obtained controller, the systemstate components

are shown in Fig. 2, one can observe that the system is stabilized
under the obtained controller.

For the approach proposed in Li, Lam, and Chung (2015), a
piecewise linear Lyapunov matrix is given in interpolation formu-
lation, constant controller gain Ki is allocated for different subsys-
tems. Choosing initial condition λ⋄1

1 = −100, λ⋄1
2 = 0, λ⋄1

3 =

0, K 1
1 = [0 0], K 1

2 = [−1 − 1], K 1
3 = [−3 − 0.5], the conditions
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Fig. 1. Variation of K2(t), K3(t) over a period with Approach I (Example 1).

Fig. 2. Trajectory of system state under stabilizing controller with Approach I
(Example 1).

are infeasible. It can be observed that this approach is dependent
on the initial condition chosen. Moreover, the linear interpolation
formulation of the Lyapunov matrix is more restrictive on the
controller structure. As mentioned in Remarks 2 and 3, noting that
the proposedmethod has larger admissible ranges of λ⋄

i and allows
time-varying controller gains. The method proposed in this paper
is thus more effective.

Example 2. Consider a periodic piecewise linear system consisting
three subsystems described as follows:

A1 =

[
0.5 0.1
0.2 0.5

]
, A2 =

[
1 0.4
0 0.4

]
, A3 =

[
3 1.5
1.6 3

]
,

B1 =

[
1

−1

]
, B2 =

[
1
0

]
, B3 =

[
1
3

]
with Tp = 2 s and T1 = 0.5 s, T2 = 0.8 s, T3 = 0.7 s, x(0) =

[0.1, 0.2]′. It can be observed that all subsystems are non-Hurwitz
and the second subsystem is unstabilizable. It is easy to conclude
this periodic system is unstable (Li, Lam, & Chung, 2015). In the
following, we will design controllers according to Theorem 3 with
both algorithms. Choosing λ⋄

1 = −1, λ⋄

1 = −2, λ⋄

1 = 4, then
λ∗ can be chosen as 0.175. According to Approach I, no controller
is designed for the second subsystem, the condition is infeasible,
controllers cannot be obtained to stabilize the system. According to

Fig. 3. Variation of K (t) over a period with Approach II (Example 2).

Fig. 4. Trajectory of system state under stabilizing controller with Approach II
(Example 2).

Approach II, controller is also designed for the second subsystem.
The variation of the controller gains are shown in Fig. 3 based on
the obtained W II (t),Q II

i (t), the system state components of the
closed-loop system are shown in Fig. 4.

The free variables are obtained as εc1 = 6.5050, εc2 = 21.5157,
εc3 = 2.5960, ζc1 = −2.9967, ζc2 = 45.0456, ζc3 = −13.8201. It
can be seen that the closed-loop system is stable under this set of
controllers. Onemay conclude that it ismore effective to stabilize a
systemwithApproach IIwhen comparedwithApproach I. It should
also be noticed that in this example, a negative λ⋄

1 is associated
with the first subsystem which is stabilizable. It indicates that in
our method, we provide more relaxed conditions than those in Li,
Lam, and Chung (2015).

6. Conclusion

In this paper, new conditions of exponential stability and sta-
bilization problems for periodic piecewise linear systems sub-
systems are proposed. Periodic continuous Lyapunov function is
constructed with time-dependent Lyapunov matrix polynomial.
Based on the square matricial representation and sum of squares
form of the homogeneous Lyapunov matrix polynomial, expo-
nential stability condition is obtained first. Stabilizing controllers
are then designed with time-varying polynomial controller gains,
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which is more applicable in practice. Numerical examples are
included to illustrate the effectiveness of the proposed method.
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