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Abstract

Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking
advantage of its inherent compliance, soft robots can assure safe interaction with external environments,
provided that precise and effective manipulation could be achieved. Endoscopy is a typical application.
However, previous model-based control approaches often require simplified geometric assumptions on the soft
manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In
this study, we propose a generic control framework based on nonparametric and online, as well as local, training
to learn the inverse model directly, without prior knowledge of the robot’s structural parameters. Detailed
experimental evaluation was conducted on a soft robot prototype with control redundancy, performing tra-
jectory tracking in dynamically constrained environments. Advanced element formulation of finite element
analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the
robot’s workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D
trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability
would facilitate effective endoscopic navigation in complex and changing environments.
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Introduction

Design of nature-inspired manipulators actuated based
on soft material properties has become one of the most

engaged research areas in robotics.1 Soft robots embedded with
delicate chambers can be driven by fluidic input,1–4 resulting in
functional deformations such as bending and elongation/
shortening.5 Accredited to the limber robotic structure, its
manipulation assures high compliance within a confined region,
facilitating versatile interaction with surrounding objects.6,7

These features introduce a potential impact to many robotic
applications demanding safe interaction within a dynamic en-

vironment, such as soft tissue in minimally invasive surgery.8,9

Therefore, endoscopy is one of the timely applications.
Conventional endoscopes predominately comprise a me-

tallic skeleton driven by steel cables, governing the kinematics
of a series of bending mechanisms. It inevitably induces high
friction and is susceptible to fatigue failure upon prolonged
duration of service. These metallic structures also come with
high rigidity at the scope tip that may increase the risk of
causing trauma or even perforation when the scope is force-
fully pushed against the wall of a confined lumen or cavity.10

This has motivated the development of soft robotic instruments
for surgical interventions,11–14 which can also be disposable to
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ensure zero risk of endoscopy-related infection transmission.
Endotics11,12 was the first system developed for the purpose of
pain-free colonoscopy. Its novel locomotion scheme attempted
to prevent the formation of complicated looping at the sigmoid/
descending colon. As a result, its single-segment bending is
capable of omnidirectional endoscopic exploration along the
colon. Aer-O-Scope13 was another commercial colonoscope
relying on a simple approach making use of single-segment
bending, which is combined with effective locomotion. The
STIFF-FLOP soft robot9,14 was another milestone in keyhole
surgery to offer intracavitary exploration using a soft-material
robot validated in a cadaveric trial for the first time.

Soft robotic endoscopes have brought a few branches of
research directions in the limelight. Various control ap-
proaches have also been developed to master the dexterity
of such manipulators, giving rise to agile and responsive
telemanipulation. Paramount to surgical safety, having a
decent control performance in the presence of a confined
and dynamic environment is also essential. Therefore,
much research effort15–18 has been paid for deriving analytical
models with the aim to describe or predict the robot kinematic/
dynamic behavior,19 akin to controlling conventional rigid-
link robots. However, these analytical models are complex due
to the intrinsic nonlinear hyperelastic property of soft elasto-
meric materials that constitute the robot body. Any additional
control dimensionality of the soft robot would further exac-
erbate the complexity of such kinematic equations.16

To simplify the modeling process, the piecewise constant
curvature (PCC) assumption is one of the widely used tech-
niques15,16,18,20 to obtain close-formed solutions.21,22 This en-
ables real-time kinematic control of curvature discrepancy to
attain the desired pose23 and to perform dynamic motion prim-
itives24 for fluidically driven soft continuum robots. The pa-
rameters that govern the analytical models can also be estimated
online.25 Other model-based methods have been proposed
without taking the PCC assumption such as approximation of
trunk-like structures to infinite degree-of-freedom (DoF) sys-
tem26 and modeling spring–mass modeling techniques,27,28

which can be incorporated in a hierarchical controller for gen-
erating stereotyped motions of an octopus-like manipulator.27

Recently, the Cosserat theory29 of elasticity has been used to
predict underwater motion of a cable-driven, octopus-like soft
robot30 by deducing its geometrically exact formulations.

Yet, external disturbance to the robot, such as gravity, pay-
load, and external interaction, can promptly invalidate those
assumptions. These oversimplified assumptions would sub-
stantially degrade the model’s reliability in real applications.
Moreover, structural parameters in the kinematics have to be
determined before the modeling process. The search for these
invariant coefficients is heuristic in nature. This might induce
further complications when mapping the robot motion analyti-
cally. In addition, such invariants can only hold upon slight
modification of the robot as they possess strong correlation with
the robot’s mechanical structure. Inevitably, the analytical model
has to be revisited after any major change to the robot structure,
further diminishing the effectiveness of such an approach.

With the foreseen difficulty of developing the analytical/
kinematic model, research attempts were made to control the
soft pliable robot using nonparametric learning-based ap-
proaches. The idea is to obtain forward/inverse mappings for
kinematic/dynamic robot control based on measurement data
only. Model-free control methods can also be developed based

on direct modeling architecture,31 where the inverse mapping is
directly obtained. This mapping depicts the inverse transition
model of the robot, which could be a changing function due to
the contact between the robot and the environments, such as
soft tissue.

The use of neural networks (NNs) has been proposed to
globally approximate the inverse mapping between end-
effector and robot actuation.32,33 Such an approach can
compensate for uncertainties in robot dynamics32 and has
been demonstrated to yield even more reliable solutions
when compared with using an analytical model of a cable-
driven soft robot.33 Previous studies of NNs mostly consider
simplified scenarios, such as a nonredundant manipulator and
contact-free situation.32,33 Although redundantly actuated
robotic systems can be controlled in lower dimensionality in
a hierarchical manner, it may require predefined movement
patterns (primitives) for specific task goals.27

Moreover, there has been a great demand on using machine
learning approaches to address the change in inverse mapping
of the hyperelastic robot upon contact.1 A Jacobian-based
model-free controller has shown its capabilities to manipu-
late a planar, cable-driven continuum robot in an environ-
ment with static constraints.34 However, there is still no
example that demonstrates manipulation of redundantly ac-
tuated soft continuum robot in three-dimensional (3D) space
and is adaptive to unknown external disturbance.

In this article, we propose a control framework based
on nonparametric local learning technique. Nonparametric
local learning methods, such as those described by Nguyen
et al. and Peters et al.,35,36 possess the ability to learn the high-
dimensional inverse transition of rigid-link robots. The essence
of nonparametric local methods is to construct a batch of lo-
cally weighted models that collectively approximate inverse
mapping. Each of these models is spawned and updated in an
independent manner such that the overall architecture can be
rapidly transformed to accommodate new input data. Mean-
while, the weighted global approximation can be optimized on
the fly and consistent with the desired control behavior.36 Such
nonparametric local learning approach can thus facilitate fast
online correction of the learning model.37 Therefore, the pro-
posed framework is suitable for providing a rapid response
to soft robot manipulation within constrained environments.

Workspace exploration is a prerequisite to collect pre-
training data for learning the proposed controller. It is desirable
to have accurate enough kinematic data to initialize the con-
troller offline since it is impractical to carry out robot explo-
ration in the confined transluminal workspace. We propose to
use finite element analysis (FEA) to sample the kinematic data
for the offline learning process. FEA has been widely used in
design optimization and miniaturization of soft robots.13 Not
only can the FEA accurately predict the highly deformable
behaviors but it can also provide data for characterization of
inverse kinematic relationships for control.38 However, the
application of FEA to robotic control has only been minimally
investigated in continuum structure with small deforma-
tion.38,39 The major contributions of this work are as follows:

� It is the first attempt to exploit online nonparametric
local learning technique with the aim to directly ap-
proximate the inverse kinematics of a redundantly ac-
tuated, fluid-driven endoscope prototype for soft robot
control in 3D space (see the Methods section).
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� Integration of FEA into the online learning method is
implemented to initialize a reliable inverse model off-
line before deployment of the proposed controller in
practical scenarios (see the Experiments, Results, and
Discussion section).

� Experimental validation of the control performance and
adaptability is conducted to demonstrate 3D trajectory
tracking (mean error <2.49�) of soft continuum robot
even under dynamic external disturbance (see the Ex-
periments, Results, and Discussion section).

Methods

Design of soft endoscope prototype

A generic, fluidic-driven soft continuum robot made of RTV
(Room Temperature Vulcanization) silicone rubber (Ecoflex
0050; Smooth-On, Inc.) is designed and fabricated to evaluate
the proposed framework for endoscopic navigation (Fig. 1a).
The soft robot comprises three cylindrical inflatable chambers,
each covered by a helical Kevlar string layer with a pitch of
1 mm. This fiber-constrained structure was first proposed by
Suzumori et al.,4,40 in which the helical constraint layer en-
forces axial anisotropic expansion of inflatable chambers so as
to generate an effective bending moment when subject to
pressure input. To enable effective endoscopic navigation, the
three air chambers can be individually actuated by air or other
fluid, facilitating a large panoramic workspace with a bending
angle >150�. The slender robot configuration with 13-mm
outer diameter and 93-mm length is also compatible with
conventional endoscopes, which is of importance to dexterous
manipulation inside a confined transluminal workspace.

Fabrication of the robot involves three major phases: (1)
three cylindrical air chambers are cast with RTV silicone in
inner molds; (2) Kevlar strings are wrapped densely in a
single helical structure along each soft chamber; and (3)
additional layers of silicone are cast to house the three in-
flatable chambers into one. This could fix the strings against
dislocation, even after numerous bending actions.

Characterization of robot motion transition

Gradual smooth regulation of the fluidic flow rate allows
steady bending of the presented soft manipulator. It also allows
rapid reaching of fluid pressure equilibrium, minimizing the
residual motion generated during such fluidic actuation. During
endoscopic navigation within small and confined spaces (e.g.,
duodenum), such quasi-static motion characteristic41 can fa-
cilitate effective precise targeting of the endoscopic camera or
interventional tools (e.g., biopsy forceps or brush cytology) at
the surgical regions of interest, thereby avoiding inadvertent
damage to delicate tissue and potential discomfort to the patient.

To mathematically describe motion transition of the soft
robot, let uk 2 U be the fluid pressure (at equilibrium) in the
actuation chambers at time step k where U denotes the control
space. Let hk be the state of the robot when the chambers are
filled with the pressure of uk at equilibrium. This state cor-
responds to the distal tip position p 2 <3 and orientation
normal n 2 <3 in the Cartesian space (Fig. 2), which are
collectively represented by xk ¼ [p, n]T 2 <6. The forward
transition model of the soft robot can be described by the
following equation system:

FIG. 1. (a) Soft robotic endoscope prototype made of sili-
cone rubber. It has a dimension compatible with the insertion
tube of conventional endoscope; (b) CAD/CAM model of the
soft manipulator showing simulated helical strain-wrapping
constrains around its individual actuation chamber using linear
truss, where the anisotropic expansion can be achieved; (c)
Finite element model tessellated with 12,000 linear hexahedron
elements. A total of 2,214 truss elements are defined to emulate
the effect of strain-wrapping constraint; (d) Cross-sectional
area tessellated by hexahedron meshing.

FIG. 2. Three robot configurations illustrating an exam-
ple of localized inverse models. Assume that their tip di-
rections si will undergo the same rotation Dsref (blue arrow)
when proper pressure changes Dui are applied, where
i¼ 1, 2, 3. In the case of configurations 1 and 2, the average
of their control inputs Du1 and Du2 would still lead to a
rotation Dsavg1&2 (red arrow) consistent with Dsref (blue
arrow); When two configurations, such as 1 and 3, are vastly
different, the average of inputs Du1 and Du3 may lead to a
rotation Dsavg1&3 (green arrow) that is significantly different
from Dsref (blue arrow), leading to undesired movement.
Therefore, learning the inverse model directly with a global
function approximator may lead to invalid solutions and
unstable robot performance.
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hkþ 1¼ f (hk,Duk)

xk ¼ h(hk)

�
(1)

where Duk ¼ ukþ 1� uk is the difference of the fluid pressure.
The motion transition function f is a continuous mapping that
depends on the current state of the robot hk. Compared with
rigid-link robots where the robot state can be well defined by
joint kinematics, it is difficult to describe the exact state of the
soft robot. For example, model-based approaches approximate
this robot state based on PCC15,16,18,20–25 and non-PCC26–30

constraints. The nonlinear function h transforms robot state
hk to Cartesian representation xk.

Typical endoscopic navigation requires delicate articula-
tion of the distal tip so as to provide accurate positioning and
easy access to the soft tissue lesion. A microcamera at the soft
robot tip provides forward vision. Therefore, the operator can
aim the distal tip at a lesion target on the luminal wall so as to
guide the interventional instruments to deploy from the tip
through the biopsy channel. This telemanipulated endoscopic
navigation gives rise to a robot task space coordinate sk de-
fined by its viewing direction (i.e., pitch and yaw angle). The
system equation in Equation (1) can hence be extended to an
actuation to task space mapping fs as follows:

skþ 1¼ fs(hk,Duk) (2)

where skþ 1¼ skþDsk is the task space coordinate at time
step kþ 1 after the change in fluid pressure Duk is applied.

Inverse problem for online learning of task
space control

Our control objective is to enable the operator to control
displacement of the robot directly in the task space coordinate
Ds�k (i.e., the desired change in the robot tip orientation) with the
use of a motion input device. The superscript ‘‘*’’ denotes the
desired motion specified by users or other reference input. Thus,
the controller is designed to approximate the inverse of the
motion transition fs in Equation (2), that is, Duk ¼ ~F(Ds�k , hk),
to estimate the required change in control input Duk (as shown
in Fig. 5). The inverse motion transition model ~F heavily de-
pends on the current robot state. However, the exact state hk

cannot be directly measured due to its hyperflexibility and the
interactions with enclosed workspace inside a patient’s cavity.
We sought to adopt the task space coordinates s, which would
offer updated clues about the current robot state.

This approach is also of practical interest because these
measurements are readily available in our control system.
The task space coordinate s can be tracked using advanced
positional tracking systems. For example, electromagnetic
(EM) tracking systems are commonly used in medical ap-
plication to provide submillimeter-level tracking.42,43 To-
gether with the actuator’s input uk, these online acquired data
are presented to the learning algorithms to update the inverse
mapping F during robot run time.

Duk ¼F(Ds�k , sk, uk) (3)

Note that F is the approximation of the true inverse
mapping ~F. If dimensionality of the task space is smaller than
that of the control space, theoretically there exist an infinite
number of solutions of Duk that result in the same task space

displacement Ds�k . This leads to the ill-posed problem in
learning the inverse mapping F.

Inverse model learning with multiple local controllers

Nonparametric local learning techniques have been ap-
plied to learn the ill-posed inverse problem, aiming to control
redundantly actuated robots.31,44,45 Referring to Peters and
Schaal,36 the inverse model of a rigid-link robot can be learnt
using spatially localized nonparametric learning techniques
given that the robot state is well defined by joint kinematics.
In this study, spatial localization refers to the robot state hk.
Such localization scheme is motivated by the hypothesis that
the inverse problem would be well defined locally.36 It is
because nonparametric learning techniques essentially aver-
age out the sampled data. Model learning based on non-
convex training datasets would give invalid solutions.36

However, in the vicinity of (s, u), the average of Du would
be consistent with the average of the task space displacement
Ds (Fig. 2). Therefore, in a local region of a given (s, u), the
training dataset Du,Ds, s, uf g would become a convex set.
This enables learning of inverse mapping in the vicinity of
(s, u) (Fig. 2). We approximate the local inverse mapping
from the desired task space displacement to the actuation
command as follows:

Duk ¼Fi(Ds�k , sk, uk)¼ [Ds�k]Tbi (4)

where bi is the parameter of the local inverse model. Each
mapping serves as a local controller. Compared with Peters
et al.,36 we do not include an intercept/bias term since the
change of actuation command Du should have zero mean.
The computation of bi will be explained in the later context.

Online learning of the global controller

To approximate the global inverse mapping, we employ a
linear combination of the locally learned mapping46:

Duk ¼
+n

i¼ 1
wi(sk, uk)Fi(Ds�k , sk, uk)

+n

i¼ 1
wi(sk, uk)

¼
+n

i¼ 1
wi(sk, uk)[Ds�k]Tbi

+n

i¼ 1
wi(sk, uk)

:

(5)

This controller architecture allows straightforward one-
iteration computation in each time step, in contrast to in-
direct modeling approaches.34 The number of local models n
and the weight wi(sk, uk), as well as the local controllers
Fi(Ds�k , sk, uk), can be obtained in an online manner.

For this purpose, the local forward model is learnt using
locally weighted projection regression (LWPR),37 which
offers piecewise linear function approximation, while it si-
multaneously determines the appropriate local region of each
linear model. Each local forward model performs a linear
mapping as follows:

Dsk ¼ f i
s (sk, uk,Duk)¼ [Duk]T b̂i (6)

where b̂i denotes the corresponding parameter. Each local
region, namely the receptive field (RF), is shaped based on
the membership function:
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wi(sk, uk)¼ exp � 0:5
sk

uk

� �
� ci

� �T

Di sk

uk

� �
� ci

� � !

(7)

centered at ci, where Di is the distance metric. Each mem-
bership function weights the corresponding locally learned
inverse model in the controller (Eq. 6).

One advantage of LWPR is that it can automatically spawn
new linear models and the corresponding RF when new data
laid outside all existing RF are presented. Meanwhile, the
center ci of RF is determined by the input space of new data
through incremental learning so as the total number of local
regions n (Fig. 3). Each newly spawned RF is initialized with
a diagonal distance metric Di value. This Di value will be
updated throughout the incremental learning process to im-
prove the overall regression accuracy and convergence rate.
To prevent overfitting and allocation of too many numbers of
RFs n, a smaller initial Di value is preferred (i.e., larger RFs).
Cross-validation is also employed in determining the initial
Di, which is important to ensure that the forward model can
be accurately reflected by piecewise linear regression.

Despite the fact that each RF could fulfill the local con-
vexity requirement due to redundancy in the robotic system,
the solutions of local controllers (Eq. 4) could be inconsistent
with the desired solutions.36 Although this problem could be
resolved by preprocessing the training data such that it only
produces one particular solution, it lacks generality and is
difficult to apply in high-dimensional systems.31 Therefore,
we employ another approach that reshapes local inverse
models using constrained optimization, where the local
controllers are enforced to provide consistent solutions from
infinite possibilities in the null space of the control space. We
then define the optimization problem as follows:

min
Du

Ck(Duk)¼ (Duk �Du0, k)TN(Duk �Du0, k) (8)

subject to Duk¼F(Ds�k , sk, uk)
where the cost function Ck represents the user-defined opti-
mality scaled by a diagonal matrix N. Du0, k ¼ t(sk, uk) is the
user-defined null-space behavior. One example of null-space
behavior could be minimizing the elongation of the robot,
which results in smaller bending radius to facilitate dexterous
motion inside enclosed cavity. Finally, the optimization
constraint Duk¼F(Ds�k , sk, uk) ensures the correctness of the
inverse solution.

The constrained optimization problem can be solved by in-
troducing a reward function (Eq. 9) and a cost function (Eq. 10):

r(uk)¼ ri exp (� 0:5r2
i Ck) (9)

Ei¼ +
N

k¼ 1

r(uk)wi(sk, uk)(Duk � [DsT
k ]bi)

2
(10)

The reward function r(uk) is scaled by the mean cost ri to
improve learning efficiency36:

r2
i ¼+k

h¼ 1
wi(sh, uh)Ch=+

k

h¼ 1
wi(sh, uh) (11)

The cost function is then minimized by means of reward-
weighted regression, where each local model needed to be
updated:

bi
kþ 1¼ (XTWiX)� 1XT WiY (12)

where Wi¼ diag(r(u1)wi
1, . . . , r(uk)wi

k), X¼ [Ds�k], and
Y¼ [Duk] are the training datasets. The overall procedures of
the learning-based controller are summarized in Algorithm 1.

FIG. 3. Example set of localized linear controllers that ap-
proximate the nonlinear inverse mapping F of a 1D actuation
Du. The valid region of each spatially localized controller is
centered at ci (denoted by plus sign), with the range parame-
terized by Di (colored ellipse) in the robot state space. The warm
color depicts the actuationDu predicted by the linear control law
bi to achieve a particular movement Ds� in task space.

Algorithm 1. Online Learning Algorithm

of Inverse Mapping

1 for each new input data sample: [Ds�k , sk, uk,Duk]
2 Add (sk, uk,Duk)! Ds�k to the forward model LWPR.
3 Update the current number of models n and localization

of the forward models wi(s, u) for all input data
Compute desired null-space behavior

4 Du0, k ¼ t(sk, uk).
Compute costs Ck ¼ (Du1, k)TNDu1, k, where

5 Du1, k ¼Duk �Du0, k

6 for each model i¼ 1, 2, . . . , n
Update the mean cost:

7 r2
i ¼+k

h¼ 1
wi(sh, uh)Ch=+

k

h¼ 1
wi(sh, uh).

Compute reward:
8 r(Duk)¼ri exp (� 0:5r2

i Ck)
Solve the following reward-weighted regression problem
with step 10–13:

9 Ei¼ +
N

k¼ 1

r(uk)wi(sk, uk)(Duk � [DsT
k ]bi)

2

Add new data point to the weighted regression:
10 Xk ¼ [Ds�k]
11 Yk ¼ [Duk]
12 Wi¼ diag(r(u1)wi

1, . . . , r(uk)wi
k)

13 Update the weighted regression of inverse mapping
model

bi
kþ 1¼ (XT WiX)� 1XT WiY

14 end
15 end
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Experiments, Results, and Discussion

The proposed control framework is implemented on a
custom-made soft robot to investigate its performance and
behavior under external dynamic constraints. We have also
attempted to utilize FEA to simulate robot motion data for
pretraining of an initial control policy. This can avoid the
need for random exploration of its robot workspace to ini-
tialize online learning functions. Such exploration is usually
time-consuming and may not be practical, particularly for
single-use purposes in surgical applications. Accuracy and
stability of the proposed controller are examined through
path following under various constrained environments. The
interaction force with the external constraint is also measured
throughout the experiments. The control block diagram of the
overall robotic system, including the processing core and
actuation system, is illustrated in Figure 6.

Initialization of online learning by FEA-based model

Proper initialization of pretraining data is essential to many
online learning techniques. These preceding data are dedi-
cated to pretraining an initial control policy before the online
learning begins. It is usually acquired by driving the robot
with random input. Instead, we proposed to incorporate FEA,
by which robot deformation can be simulated with a hyper-
elastic computation model. This simulation can generate
comprehensive pretraining samples that cover the entire ro-
bot workspace at a high resolution, facilitating offline pre-
training of the learning-based controller (Fig. 5).

The FEA model of the robot is constructed using ABA-
QUS47 to predict the robot kinematics and workspace. RTV
silicone rubber is considered as incompressible hyperelastic
material formulated by Odgen material model.48 It exhibits
negligible volume change under hydrostatic compression and
has a Poisson’s ratio close to 0.5. Due to the incompressibility
of silicone rubber and the large deformation nature of the
simulation, the element formulation and mesh quality pose a
compelling effect on both accuracy and convergence of the
simulation. Therefore, hexahedral element (C3D8RH; Fig. 1c)
based on u-p hybrid formulation with hourglass control47 is
chosen over the commonly used quadratic tetrahedral elements
(Fig. 1d) in the FEA of our soft robotic manipulators.

The C3D8RH element possesses eight displacement nodes
and one interior pressure node. The combination of these
displacement and pressure nodes is often close to optimal.49

Such integration scheme improves not only element efficiency
but also element accuracy under bending load. However,
compared with tetrahedrons, automatic mesh generation of
hexahedrons is relatively ineffective, resulting in poor tes-
sellation quality. To this end, the presented meshing has to be
obtained by custom-designed protrusions, and all elements
are right prisms initially. By restoring the mesh quality, the
assemblage contains far fewer elements and is much more
robust in convergence.

The presented manipulator model is tessellated with 12k
linear hexahedral elements (C3D8RH; Fig. 1c). There are
also 2,214 linear truss elements (T3D2) being placed along
each actuation chamber in a layer-by-layer arrangement
(Fig. 1b). Truss elements are used to model the helical strain-
wrapping constraints that ensure the anisotropic expansion of
chambers upon pressure actuation. Actuation and gravity
loads are applied to the presented FEA model. The gradual
change of the stress input, which is distributed across the
surface mesh along the inner chamber surface, guarantees
reliable convergence, giving rise to an equilibrium solution
throughout all the time steps during the FEA.

Quasi-static motion with negligible hysteresis can be
achieved when the real robot prototype is manipulated while
delicately regulating the inflation pressure into the chamber
at high-resolution steps. It is worth noting that deformation/
bending of both the FEA-modeled manipulator and the actual
one are very similar corresponding to the same levels of in-
flation pressure simulated, as shown in Figure 4. Over 1,000
simulated motion samples Du,Ds, s, uf g have been obtained
using the FEA, covering the entire robot workspace (Fig. 5).
These simulated data are adopted to pretrain the online
learning controller as described in the following sections.

Experimental setup

To evaluate the proposed control performance, three mo-
torized pneumatic units are employed to actuate the presented
soft manipulator incorporated with our close-loop control
testing platform (Fig. 6). Each unit consists of a pneumatic

FIG. 4. FEA models (left) simulated with seven levels of inflation pressure in a single chamber. Similar deformation
characteristics are exhibited in actual configurations of the soft manipulator (right) under the same corresponding pressure
levels. FEA, finite element analysis.
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cylinder coupled to a precise stepper motor through a lead
screw transmission. This facilitates accurate regulation of air
flow. Our soft robotic manipulator can be fully articulated in
a dome-shaped workspace with a maximum curve angle of
>150� in all directions.

An EM tracking system (NDI Medical Aurora) is em-
ployed to close the robot control loop by the continuous
positional data feedback (Fig. 7a). This tracking system is
commonly available in many image-guided intervention
systems. It can track the position and orientation of tiny EM
coils in real time with root mean square (RMS) accuracy of
0.7 mm and 0.2� at 40 Hz. A tiny tracking coil is embedded at

the robot distal tip. Online updating (at 20 Hz) of the inverse
mapping estimation Duk¼F(Dsk

�, sk, uk) by the local
learning algorithm is achieved, where sk is measured tip di-
rection. The positional data are also recorded throughout the
robot task so as to evaluate overall control performance. The
entire control framework is implemented in the MATLAB
environment. The open-source library of LWPR50 is em-
ployed to incrementally learn the robot forward model, which
determines valid linearization of each local controller.

A series of path-following tasks is performed under vari-
ous constraint scenarios to investigate how the online learn-
ing control approach reacts to such unknown interactions. At

FIG. 5. FEA-simulated ki-
nematic data covering the en-
tire workspace of the soft
robot. The arrows illustrate
the predicted movement of
the robot tip when an arbitrary
pressure change Duk is ap-
plied. These data enable pre-
training of a reasonable initial
control policy before the on-
line learning begins, without
the need for undesired ran-
dom movement (babbling).

FIG. 6. System architecture of the proposed control framework depicting interconnections of key components. The
processing core is responsible for fast computation of inverse solution. The inverse model is also updated continuously by
incorporating the online data in real time. The operator can specify the reference input s

ref
k through a motion input device for

effective endoscopic navigation. In our experiments, this input is replaced by a predefined reference trajectory to evaluate
the online learning performance of inverse mapping.
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the beginning, the robot is allowed to move freely in its
workspace without any interference. This serves as the con-
trol experiment to establish the baseline of controller per-
formance. Subsequently, the robot is gently pushed by a
plastic rod to simulate an unknown dynamic interaction with
the robot manipulation (Fig. 7b). The rod is actuated by a
high-precision stepping motor to generate repeatable contact
with the robot body; meanwhile, the contact force is moni-
tored by a force/torque sensor (ATI Industrial Automation:
F/T Nano17). The tracking error is defined as the shortest
distance between the robot targeting direction sk and the
desired trajectory.

Evaluation of online local learning controller

To realize accurate navigation under unknown constraints,
the inverse model is adapted in the proposed learning-based
controller, which has to be updated online based on the newly
acquired motion data. In this study, we compared three types
of data sources for the inverse model training: (1) pretrained
by FEA data without using online data; (2) initialized by
random exploration with online learning data; and (3) pre-
trained by the FEA data, and then updated by online data.
These online-updated inverse models are evaluated for re-
solved motion rate control51 to track a predefined trajectory.
Thus, the desired task space displacement Ds�k that tracks the
reference input is obtained as follows:

Ds�k ¼Ds
ref
k þKref

p (s
ref
k � sk) (13)

where Ds
ref
k and s

ref
k are the reference task space displace-

ments and coordinates generated from interpolating a pre-
defined trajectory. Note that the reference input can be
replaced by manual control in actual endoscopic navigation
scenario. We employed the same proportional–derivative
(PD) gain Kref

p ¼ I for all three settings to perform tracking
along a reference trajectory. Thus, the actuation input Duk is
estimated by the online learning inverse model as depicted in
Equation (4).

To enforce the consistency of inverse mapping among all
localized linear controllers, a standard null-space behavior
Du0, k¼ t(sk, uk) is defined. This gives rise to an immediate
reward function r(Duk) to weigh the training data that best
imitate the desired null-space behavior (Eq. 9). For the pre-
sented soft robot, we first choose a rest configuration to be
urest¼ [0, 0, 0]T, which can minimize the overall inflation
pressure as well as elongation of the manipulator. Then, the
robot is attracted toward the rest configuration with a loose
attractor function Du0, k ¼ �Kp(uk �urest), where Kp¼ 0:2I.
We defined an identity metric N¼ I as all three inflatable
actuators of the robot are identical and should contribute the
same in achieving the desired null-space behavior.

It is also necessary to normalize the training dataset into
the same scale component-wise so that the LWPR can learn
the data variance properly. Min-max normalization is a
simple but effective technique commonly used52:

q̂i¼
qi� min (qi)

max (qi)� min (qi)
(14)

However, the statistical max(qi) and min(qi) values would
be sensitive to outliers; therefore, we define the min–max
values according to the physical constraints of data, including
the typical robot workspace and the maximum volume of the
cylinder unit.

Pretrained by FEA without using online data. In this
setting, both the forward model and control policy are pre-
trained solely by the FEA-simulated data (see the Initializa-
tion of online learning by FEA-based model section). The
online data were not taken into account in this setting. This
acts as a control experiment to depict the actual influence of
external interactions. In the unconstrained experiment
(Fig. 8a), it was observed that the controller could roughly
follow the trajectory with a relatively large tracking error of
–1.79� and a maximum error of –6.96� with the use of the
feedback controller (Table 1). Despite the considerable dis-
crepancy between the FEA-simulated and actual configuration,

FIG. 7. (a) Registration process of the predefined trajectory using an electromagnetic (EM) position tracking system. Blue
line on the transparent sphere illustrates the tracking trajectory on the task space; (b) Soft manipulator is commanded to
follow the desired trajectory automatically. Its end-effector position is also measured by the tracking system to close the
feedback loop under online learning control policy. Plastic rod actuated by a stepping motor pushes against the soft robot,
generating external constrains. The contact force is monitored by a force/torque sensor.
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FIG. 8. Tracked trajectory plotted (left) and the corresponding tracking error in time domain (right). In the control
experiment, the robot is allowed to move freely without any constraint. Control performance of the online learning
controllers trained by three different data sources is validated: (a) Pretrained by FEA without using online data; (b) Pure
online learning initialized by random exploration; (c) Pretrained by FEA data and updated by online data. The online
learning initialized by the FEA data approach (c) combines the advantage of (a, b), in which random exploration (green path
in (b)) is not required, but its tracking errors converge to similar accuracy as in pure online learning.
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this experiment still demonstrates that the FEA data are ca-
pable of pretraining a reasonable inverse model for rough path
following.

In the later constrained experiment (Fig. 9a), the robot
maintained tracking of the trajectory with similar accuracy at
the beginning. When the external interaction is engaged at the
moment of 25 s, the robot was pushed further away from the
desired trajectory, resulting in an increased mean tracking
error –4.64� and a maximum error of –14� (Table 2). This
indicates that the feedback controller cannot fully compen-
sate the significant motion bias that is induced by external
disturbance.

In the case of a conventional rigid-linked robot, this kind of
error due to the interaction with the constraint is often con-
sidered as a perturbation. The error can hence be compen-
sated by increasing the feedback control gain given that the
inverse model is readily available from the kinematic chain.
However, such approach is not directly applicable to a soft
robot due to their mechanical compliance that inevitably
induces much larger positioning errors. In addition, the in-
teraction force may also alter the force equilibrium of the
robot and therefore substantially degrading the reliability of
the predetermined inverse model. The following experiments
demonstrate how the proposed online algorithm can accom-
modate the influence of constrained environment, which is
particularly demanding for the control of soft robots.

Initialized by random exploration with online learning. The
random exploration of robot workspace is a typical ap-
proach34 to initialize a data-driven controller before its
actual deployment. This kind of arbitrary movement is
necessary to provide preceding data for setting up a learning
model. It involves tracking 50 random input pressure
waypoints uk with a PD feedback controller. The deliber-
ately tuned PD gains can cause poor tracking of random
waypoints. Such babbling movement (green path in Figs. 8b
and 9b) can facilitate a faster learning rate as the robot
sweeps throughout a wider neighboring workspace. Pre-
training with the exploration data resulted in a forward
LWPR model with 110 RFs, which define linearization for
the piecewise linear inverse model in advance to actual
deployment of the online learning.

Upon exploration, the online learning controller could
follow the desired trajectory with an average error of –1.13�
in the first cycle under the constraint-free environment
(Fig. 8b). The error was found to be significantly lower than
the inverse model pretrained by FEA-simulated data. It is
reasonable because the actual robot data were used. After a
few cycles, the tracking error further decayed to an average of
–0.87� and maximum of –1.92� as having the online learning
controller adapted with the trajectory.

Next, the feasibility of online inverse model adaptation
was validated by engaging external force interactions
(Fig. 9b). The online learning controller can compensate
the bias and hence minimize the error down to an average
of –2.35� within 5 s upon contact with the constraint. The
external constraint is moved away after 30 s of contact. It is
also worth noting that the controller could quickly update
the inverse mapping online and follow the trajectory will
high accuracy. No control instability is observed throughout
the experiment. The pure online learning approach achieves
the highest average accuracy among all settings, both for
constrained and unconstrained scenarios (Tables 1 and 2).
However, the need for initialization by babbling motion
(green path in Figs. 8b and 9b) should be avoided in clinical
scenarios to prevent unnecessary interactions with patient
anatomy.

Pretrained by FEA data, then updated by online data. To
alleviate the need for random exploration, we attempted to
pretrain the controller with FEA data and then update the in-
verse model by online learning. This approach combines the
advantages of the both aforementioned settings, in which the
inverse model can be initialized with FEA data. The robot can
immediately begin navigation using this pretrained model
without the need of initialization through undesired babbling
movement. The subsequent manipulation data are also ac-
quired to incrementally train a more precise inverse model so
as to adapt to external interactions. This feature is demonstrated
in Figure 8c, in which the robot is allowed to move freely.

Although the robot begins with a relatively large tracking
error of average –2.21� and maximum of –7.49� in the first
cycle, the error is quickly compensated by the online learning
and converged to an average of –0.90� and maximum of
–2.80�. This tracking result is compared with the other two
approaches in Table 1. In the first cycle, the combined ap-
proach exhibits tracking error close to pretraining with FEA
only (average –2.21� vs. –1.79�) because both inverse
models are initialized with less accurate FEA data. The
learning technique then corrects the inverse model with on-
line data so that the tracking error decreases rapidly and be-
comes comparable with the pure online approach (average
–0.90� vs. –0.87�).

This shows that the combined approach can initialize a
reasonable learning-based controller with less accurate FEA
data, then further refine the inverse model while performing
the tracking task. Note that the combined approach does not
required random exploration (green path in Figs. 8b and 9b)
to obtain pretraining data, which is difficult to cover the entire
robot workspace with sufficient density.

This combined approach is also capable of adapting to the
unknown external interaction (Fig. 9c). The inverse model

Table 1. Trajectory Tracking Performance Under Freely Moveable Environment

Training mode

Mean absolute error Maximum absolute error Error SD r

First cycle After First cycle After First cycle After

Pretrained by FEA only –1.79� –1.82� –6.96� –6.56� 1.71� 1.66�
Pure online learning –1.13� –0.87� –4.24� –1.92� 0.86� 0.45�
Combined –2.21� –0.90� –7.49� –2.80� 1.81� 0.65�

FEA, finite element analysis; SD, standard deviation.
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FIG. 9. Tracked trajectory plotted (left) and the corresponding tracking error in time domain (right) under external
interactions. Control performance is validated in three different conditions as in Figure 8. It can be observed that online
learning for (b, c) is capable of compensating the external interaction with the tracking error reduced, compared with the
controller without using online data (a).
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can quickly adapt the inverse mapping upon contact with the
external interaction at 36 s. It continues to follow the trajec-
tory with a small mean absolute error of –2.49�. The con-
troller also remains stable and readapts after the removal of
constraints. Readers could also refer to the attached Supple-
mentary Video (Supplementary Data are available online at
www.liebertpub.com/soro) for extra details about the robot
behavior and the characteristics of constraint.

Referring to the Evaluation of online local learning con-
troller section, we presented the challenge in learning an
inverse model spatially localized by the unmeasurable robot
state hk as well as how this robot state can be retrieved in-
directly from sensory measurements. These trajectory
tracking experiments have shown that the inverse model
could be successfully learnt by continuous updates of both the
task space coordinate sk and control input uk. Both are set as
the localization parameters required in the inverse model.
Therefore, the robot state hk could be estimated sustainably
by the learning algorithm. These 3-6D positional data updates
are clinically practical. The comparable position-tracking
techniques designed for image-guided interventions are also
under active research,53 one of which would be magnetic
resonance imaging-guided endoscopic retrograde cho-
langiopancreatography.

Conclusion and Future Work

We have proposed a model-free control framework that
adopts an online nonparametric local learning technique for
manipulation of a redundantly actuated, fluid-driven soft
continuum robot in the presence of a dynamic external dis-
turbance. Nonparametric techniques are capable of construct-
ing highly nonlinear functions by measurement of data solely,
which is particularly suitable for characterization of hyper-
elastic robot structure. To accommodate the flexibility of soft
robot body, we approximate the global inverse kinematics
by a linear combination of many locally learnt inverse kine-
matic models.

Our model-free controller employs this global approxi-
mation, where the behavior of the redundant actuator can be
optimized by a user-defined criterion, and simultaneously
fulfilling the control objective defined in task space coordi-
nates. In addition, the controller is adaptive to changes in the
environment, where each local model can be updated online
independently according to newly acquired data. This equips
the robot with the ability to maintain control accuracy under
external dynamic disturbance. Our work is the first attempt of
implementing such direct inverse modeling using an online
nonparametric learning technique to control a redundantly
actuated soft continuum robot.

We have also incorporated FEA into the learning control
framework for proper initialization of the robot inverse
model. It enables precise prediction of the hyperelastic robot

deformation under various actuation pressures, without the
need for the oversimplified analytical model. It can also offer
adequate sample data covering the entire workspace at high
resolution. This avoids the need of time-consuming random
exploration to initialize the learning model, which may not be
practical in many surgical applications. The proposed con-
troller can hence be initialized offline using FEA-simulated
data, ready for endoscopic navigation procedure.

The proposed novel control framework has been experi-
mentally validated. In the constrained experiment, after FEA-
based initialization of the controller, the endoscope prototype
could follow a 3D trajectory with an accuracy of mean –
2.21� and maximum –7.49� and attained almost the same
tracking accuracy (mean –2.49� and maximum –11.03�)
after 5 s upon addition/removal of external disturbance
(maximum 1N). This is also the first demonstration of re-
alizing model-free close-loop control of a fluid-driven soft
continuum in 3D task space even under dynamic external
disturbance.

The current form of our learning-based control method is
first designed for a single segment manipulator. In our future
work, we intend to extend the framework to address soft
manipulation with multisegments.54 As a cascade of multiple
actuation modules, it provides enhanced manipulation flexi-
bility for interventional tools, facilitating more complicated
operations in a confined space. In this case, a generic opti-
mization function will be developed to resolve the null-space
control of hyper-redundant robot.55 Further characterization
of such multisegment soft manipulators will be investigated.
To address its hyper-redundancy, it will also require addi-
tional sensory systems or algorithms to parameterize the
possible motion transition of robot configuration, thus esti-
mating the inverse model for the higher DoF robot.
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